Coupling of compressible and incompressible flow regions using the multiple pressure variables approach
In many cases, multiphase flows are simulated on the basis of the incompressible Navier–Stokes equations. This assumption is valid as long as the density changes in the gas phase can be neglected. Yet, for certain technical applications such as fuel injection, this is no longer the case, and at leas...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2015-02, Vol.38 (3), p.458-477 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 477 |
---|---|
container_issue | 3 |
container_start_page | 458 |
container_title | Mathematical methods in the applied sciences |
container_volume | 38 |
creator | Boger, Markus Jaegle, Felix Klein, Rupert Munz, Claus-Dieter |
description | In many cases, multiphase flows are simulated on the basis of the incompressible Navier–Stokes equations. This assumption is valid as long as the density changes in the gas phase can be neglected. Yet, for certain technical applications such as fuel injection, this is no longer the case, and at least the gaseous phase has to be treated as a compressible fluid. In this paper, we consider the coupling of a compressible flow region to an incompressible one based on a splitting of the pressure into a thermodynamic and a hydrodynamic part. The compressible Euler equations are then connected to the Mach number zero limit equations in the other region. These limit equations can be solved analytically in one space dimension that allows to couple them to the solution of a half‐Riemann problem on the compressible side with the help of velocity and pressure jump conditions across the interface. At the interface location, the flux terms for the compressible flow solver are provided by the coupling algorithms. The coupling is demonstrated in a one‐dimensional framework by use of a discontinuous Galerkin scheme for compressible two‐phase flow with a sharp interface tracking via a ghost‐fluid type method. The coupling schemes are applied to two generic test cases. The computational results are compared with those obtained with the fully compressible two‐phase flow solver, where the Mach number zero limit is approached by a weakly compressible fluid. For all cases, we obtain a very good agreement between the coupling approaches and the fully compressible solver. Copyright © 2014 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/mma.3081 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660043974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660043974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4341-c639629924da860a685fb004fa4984207bc856696c503ea09ac3a8be4e18c6b53</originalsourceid><addsrcrecordid>eNp10EFLwzAYBuAgCs4p-BMCXrx0Jk2aNscxdRO2iaJ4DGmWbpltU5PVuX9v5kSZ4CmQPN-bjxeAc4x6GKH4qqpkj6AMH4AORpxHmKbsEHQQTlFEY0yPwYn3S4QCwXEHzAe2bUpTz6EtoLJV47T3Ji81lPUMmnrvqijtGjo9N7b2sPXbqdVCw6otV6YJ71-ydRq-S2dkmPBQNo2zUi1OwVEhS6_Pvs8ueL69eRqMovH98G7QH0eKEoojxQhnMecxncmMIcmypMgRooWkPKMxSnOVJYxxphJEtERcKiKzXFONM8XyhHTB5S43fPvWar8SlfFKl6WstW29wIyFOMJTGujFH7q0ravDdkFRxghOcPwbqJz13ulCNM5U0m0ERmLbuAiNi23jgUY7ujal3vzrxGTS3_fGr_THj5fuVbCUpIl4mQ7F9Hr4mHAyEg_kE1LakU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1646631512</pqid></control><display><type>article</type><title>Coupling of compressible and incompressible flow regions using the multiple pressure variables approach</title><source>Wiley Journals</source><creator>Boger, Markus ; Jaegle, Felix ; Klein, Rupert ; Munz, Claus-Dieter</creator><creatorcontrib>Boger, Markus ; Jaegle, Felix ; Klein, Rupert ; Munz, Claus-Dieter</creatorcontrib><description>In many cases, multiphase flows are simulated on the basis of the incompressible Navier–Stokes equations. This assumption is valid as long as the density changes in the gas phase can be neglected. Yet, for certain technical applications such as fuel injection, this is no longer the case, and at least the gaseous phase has to be treated as a compressible fluid. In this paper, we consider the coupling of a compressible flow region to an incompressible one based on a splitting of the pressure into a thermodynamic and a hydrodynamic part. The compressible Euler equations are then connected to the Mach number zero limit equations in the other region. These limit equations can be solved analytically in one space dimension that allows to couple them to the solution of a half‐Riemann problem on the compressible side with the help of velocity and pressure jump conditions across the interface. At the interface location, the flux terms for the compressible flow solver are provided by the coupling algorithms. The coupling is demonstrated in a one‐dimensional framework by use of a discontinuous Galerkin scheme for compressible two‐phase flow with a sharp interface tracking via a ghost‐fluid type method. The coupling schemes are applied to two generic test cases. The computational results are compared with those obtained with the fully compressible two‐phase flow solver, where the Mach number zero limit is approached by a weakly compressible fluid. For all cases, we obtain a very good agreement between the coupling approaches and the fully compressible solver. Copyright © 2014 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.3081</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Freiburg: Blackwell Publishing Ltd</publisher><subject>Compressibility ; compressible flow ; Computational fluid dynamics ; Fluid flow ; half-Riemann problem ; incompressible flow ; iterative coupling procedures ; Joining ; Mathematical analysis ; Mathematical models ; multiple pressure variables ; Navier-Stokes equations ; Solvers</subject><ispartof>Mathematical methods in the applied sciences, 2015-02, Vol.38 (3), p.458-477</ispartof><rights>Copyright © 2014 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2015 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4341-c639629924da860a685fb004fa4984207bc856696c503ea09ac3a8be4e18c6b53</citedby><cites>FETCH-LOGICAL-c4341-c639629924da860a685fb004fa4984207bc856696c503ea09ac3a8be4e18c6b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.3081$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.3081$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Boger, Markus</creatorcontrib><creatorcontrib>Jaegle, Felix</creatorcontrib><creatorcontrib>Klein, Rupert</creatorcontrib><creatorcontrib>Munz, Claus-Dieter</creatorcontrib><title>Coupling of compressible and incompressible flow regions using the multiple pressure variables approach</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>In many cases, multiphase flows are simulated on the basis of the incompressible Navier–Stokes equations. This assumption is valid as long as the density changes in the gas phase can be neglected. Yet, for certain technical applications such as fuel injection, this is no longer the case, and at least the gaseous phase has to be treated as a compressible fluid. In this paper, we consider the coupling of a compressible flow region to an incompressible one based on a splitting of the pressure into a thermodynamic and a hydrodynamic part. The compressible Euler equations are then connected to the Mach number zero limit equations in the other region. These limit equations can be solved analytically in one space dimension that allows to couple them to the solution of a half‐Riemann problem on the compressible side with the help of velocity and pressure jump conditions across the interface. At the interface location, the flux terms for the compressible flow solver are provided by the coupling algorithms. The coupling is demonstrated in a one‐dimensional framework by use of a discontinuous Galerkin scheme for compressible two‐phase flow with a sharp interface tracking via a ghost‐fluid type method. The coupling schemes are applied to two generic test cases. The computational results are compared with those obtained with the fully compressible two‐phase flow solver, where the Mach number zero limit is approached by a weakly compressible fluid. For all cases, we obtain a very good agreement between the coupling approaches and the fully compressible solver. Copyright © 2014 John Wiley & Sons, Ltd.</description><subject>Compressibility</subject><subject>compressible flow</subject><subject>Computational fluid dynamics</subject><subject>Fluid flow</subject><subject>half-Riemann problem</subject><subject>incompressible flow</subject><subject>iterative coupling procedures</subject><subject>Joining</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>multiple pressure variables</subject><subject>Navier-Stokes equations</subject><subject>Solvers</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp10EFLwzAYBuAgCs4p-BMCXrx0Jk2aNscxdRO2iaJ4DGmWbpltU5PVuX9v5kSZ4CmQPN-bjxeAc4x6GKH4qqpkj6AMH4AORpxHmKbsEHQQTlFEY0yPwYn3S4QCwXEHzAe2bUpTz6EtoLJV47T3Ji81lPUMmnrvqijtGjo9N7b2sPXbqdVCw6otV6YJ71-ydRq-S2dkmPBQNo2zUi1OwVEhS6_Pvs8ueL69eRqMovH98G7QH0eKEoojxQhnMecxncmMIcmypMgRooWkPKMxSnOVJYxxphJEtERcKiKzXFONM8XyhHTB5S43fPvWar8SlfFKl6WstW29wIyFOMJTGujFH7q0ravDdkFRxghOcPwbqJz13ulCNM5U0m0ERmLbuAiNi23jgUY7ujal3vzrxGTS3_fGr_THj5fuVbCUpIl4mQ7F9Hr4mHAyEg_kE1LakU8</recordid><startdate>201502</startdate><enddate>201502</enddate><creator>Boger, Markus</creator><creator>Jaegle, Felix</creator><creator>Klein, Rupert</creator><creator>Munz, Claus-Dieter</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>201502</creationdate><title>Coupling of compressible and incompressible flow regions using the multiple pressure variables approach</title><author>Boger, Markus ; Jaegle, Felix ; Klein, Rupert ; Munz, Claus-Dieter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4341-c639629924da860a685fb004fa4984207bc856696c503ea09ac3a8be4e18c6b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Compressibility</topic><topic>compressible flow</topic><topic>Computational fluid dynamics</topic><topic>Fluid flow</topic><topic>half-Riemann problem</topic><topic>incompressible flow</topic><topic>iterative coupling procedures</topic><topic>Joining</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>multiple pressure variables</topic><topic>Navier-Stokes equations</topic><topic>Solvers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boger, Markus</creatorcontrib><creatorcontrib>Jaegle, Felix</creatorcontrib><creatorcontrib>Klein, Rupert</creatorcontrib><creatorcontrib>Munz, Claus-Dieter</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boger, Markus</au><au>Jaegle, Felix</au><au>Klein, Rupert</au><au>Munz, Claus-Dieter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling of compressible and incompressible flow regions using the multiple pressure variables approach</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2015-02</date><risdate>2015</risdate><volume>38</volume><issue>3</issue><spage>458</spage><epage>477</epage><pages>458-477</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>In many cases, multiphase flows are simulated on the basis of the incompressible Navier–Stokes equations. This assumption is valid as long as the density changes in the gas phase can be neglected. Yet, for certain technical applications such as fuel injection, this is no longer the case, and at least the gaseous phase has to be treated as a compressible fluid. In this paper, we consider the coupling of a compressible flow region to an incompressible one based on a splitting of the pressure into a thermodynamic and a hydrodynamic part. The compressible Euler equations are then connected to the Mach number zero limit equations in the other region. These limit equations can be solved analytically in one space dimension that allows to couple them to the solution of a half‐Riemann problem on the compressible side with the help of velocity and pressure jump conditions across the interface. At the interface location, the flux terms for the compressible flow solver are provided by the coupling algorithms. The coupling is demonstrated in a one‐dimensional framework by use of a discontinuous Galerkin scheme for compressible two‐phase flow with a sharp interface tracking via a ghost‐fluid type method. The coupling schemes are applied to two generic test cases. The computational results are compared with those obtained with the fully compressible two‐phase flow solver, where the Mach number zero limit is approached by a weakly compressible fluid. For all cases, we obtain a very good agreement between the coupling approaches and the fully compressible solver. Copyright © 2014 John Wiley & Sons, Ltd.</abstract><cop>Freiburg</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/mma.3081</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2015-02, Vol.38 (3), p.458-477 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660043974 |
source | Wiley Journals |
subjects | Compressibility compressible flow Computational fluid dynamics Fluid flow half-Riemann problem incompressible flow iterative coupling procedures Joining Mathematical analysis Mathematical models multiple pressure variables Navier-Stokes equations Solvers |
title | Coupling of compressible and incompressible flow regions using the multiple pressure variables approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A32%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20of%20compressible%20and%20incompressible%20flow%20regions%20using%20the%20multiple%20pressure%20variables%20approach&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Boger,%20Markus&rft.date=2015-02&rft.volume=38&rft.issue=3&rft.spage=458&rft.epage=477&rft.pages=458-477&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.3081&rft_dat=%3Cproquest_cross%3E1660043974%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1646631512&rft_id=info:pmid/&rfr_iscdi=true |