Coupling of compressible and incompressible flow regions using the multiple pressure variables approach

In many cases, multiphase flows are simulated on the basis of the incompressible Navier–Stokes equations. This assumption is valid as long as the density changes in the gas phase can be neglected. Yet, for certain technical applications such as fuel injection, this is no longer the case, and at leas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2015-02, Vol.38 (3), p.458-477
Hauptverfasser: Boger, Markus, Jaegle, Felix, Klein, Rupert, Munz, Claus-Dieter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In many cases, multiphase flows are simulated on the basis of the incompressible Navier–Stokes equations. This assumption is valid as long as the density changes in the gas phase can be neglected. Yet, for certain technical applications such as fuel injection, this is no longer the case, and at least the gaseous phase has to be treated as a compressible fluid. In this paper, we consider the coupling of a compressible flow region to an incompressible one based on a splitting of the pressure into a thermodynamic and a hydrodynamic part. The compressible Euler equations are then connected to the Mach number zero limit equations in the other region. These limit equations can be solved analytically in one space dimension that allows to couple them to the solution of a half‐Riemann problem on the compressible side with the help of velocity and pressure jump conditions across the interface. At the interface location, the flux terms for the compressible flow solver are provided by the coupling algorithms. The coupling is demonstrated in a one‐dimensional framework by use of a discontinuous Galerkin scheme for compressible two‐phase flow with a sharp interface tracking via a ghost‐fluid type method. The coupling schemes are applied to two generic test cases. The computational results are compared with those obtained with the fully compressible two‐phase flow solver, where the Mach number zero limit is approached by a weakly compressible fluid. For all cases, we obtain a very good agreement between the coupling approaches and the fully compressible solver. Copyright © 2014 John Wiley & Sons, Ltd.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.3081