Optimization of aerodynamic efficiency for twist morphing MAV wing
Twist morphing (TM) is a practical control technique in micro air vehicle (MAV) flight. However, TM wing has a lower aerodynamic efficiency (CL/CD) compared to membrane and rigid wing. This is due to massive drag penalty created on TM wing, which had overwhelmed the succes- sive increase in its lift...
Gespeichert in:
Veröffentlicht in: | Chinese journal of aeronautics 2014-06, Vol.27 (3), p.475-487 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Twist morphing (TM) is a practical control technique in micro air vehicle (MAV) flight. However, TM wing has a lower aerodynamic efficiency (CL/CD) compared to membrane and rigid wing. This is due to massive drag penalty created on TM wing, which had overwhelmed the succes- sive increase in its lift generation. Therefore, further CL/CDmax optimization on TM wing is needed to obtain the optimal condition for the morphing wing configuration. In this paper, two-way fluid- structure interaction (FSI) simulation and wind tunnel testing method are used to solve and study the basic wing aerodynamic performance over (non-optimal) TM, membrane and rigid wings. Then, a multifidelity data metamodel based design optimization (MBDO) process is adopted based on the Ansys-DesignXplorer frameworks. In the adaptive MBDO process, Kriging metamodel is used to construct the final multifidelity CL/CD responses by utilizing 23 multi-fidelity sample points from the FSI simulation and experimental data. The optimization results show that the optimal TM wing configuration is able to produce better CL/CDmax magnitude by at least 2% than the non-optimal TM wings. The flow structure formation reveals that low TV strength on the optimal TM wing induces low CD generation which in turn improves its overall CL/CDmax performance. |
---|---|
ISSN: | 1000-9361 |
DOI: | 10.1016/j.cja.2014.04.017 |