The bovine papillomavirus type 1 E5 transforming protein specifically binds and activates the beta-type receptor for the platelet-derived growth factor but not other related tyrosine kinase-containing receptors to induce cellular transformation

The 44-amino-acid E5 protein of bovine papillomavirus type 1 is a highly hydrophobic protein which appears to transform cells through the activation of growth factor receptors. To investigate the specificity of E5-growth factor receptor interactions required for mitogenic signaling, we utilized a no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Virology 1994-07, Vol.68 (7), p.4432-4441
Hauptverfasser: Goldstein, D.J, Li, W, Wang, L.M, Heidaran, M.A, Aaronson, A, Shinn, R, Schlegel, R, Pierce, J.H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The 44-amino-acid E5 protein of bovine papillomavirus type 1 is a highly hydrophobic protein which appears to transform cells through the activation of growth factor receptors. To investigate the specificity of E5-growth factor receptor interactions required for mitogenic signaling, we utilized a nontumorigenic, murine myeloid cell line (32D) which is strictly dependent on interleukin-3 (IL-3) for sustained proliferation in culture. This IL-3 dependence can be functionally substituted by the expression of a variety of surrogate growth factor receptors and the addition of the corresponding ligand. Several receptor cDNAs for the alpha- and beta-type platelet-derived growth factor receptors [alpha PDGFR and beta PDGFR], the epidermal growth factor receptor, and the colony-stimulating factor 1 receptor) were transfected into 32D cells constitutively expressing the E5 protein to test for IL-3-independent growth. Only PDGFR was capable of abrogating the IL-3 dependence of 32D cells. The proliferative signal induced by the coexpression of PDGFR and E5 was accompanied by stable complex formation between these proteins, constitutive tyrosine phosphorylation of the receptor, and tumorigenicity in nude mice. The lack of cooperative interaction between E5 and the epidermal growth factor receptor, the colony-stimulating factor 1 receptor, and the highly related a PDGFR was paralleled by the inability of E5 to bind to these receptors and failure to increase receptor tyrosine phosphorylation. Thus, these data indicate that the ability of E5 to induce sustained proliferation and transformation of 32D cells is a direct consequence of specific interaction between the E5 protein and the PDGFR signaling complex and the subsequent stimulation of receptor tyrosine phosphorylation
ISSN:0022-538X
1098-5514
DOI:10.1128/JVI.68.7.4432-4441.1994