c-Src deactivation by the polyphenol 3-O-caffeoylquinic acid abrogates reactive oxygen species-mediated glutamate release from microglia and neuronal excitotoxicity

3-O-caffeoylquinic acid (3-CQA) is an isomer of chlorogenic acid, which has been shown to regulate lipopolysaccharide-induced tumor necrosis factor production in microglia. Whereas overactivation of microglia is associated with neuronal loss in brain diseases via reactive oxygen species (ROS) produc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Free radical biology & medicine 2015-02, Vol.79, p.45-55
Hauptverfasser: Socodato, Renato, Portugal, Camila C., Canedo, Teresa, Domith, Ivan, Oliveira, Nadia A., Paes-de-Carvalho, Roberto, Relvas, João B., Cossenza, Marcelo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:3-O-caffeoylquinic acid (3-CQA) is an isomer of chlorogenic acid, which has been shown to regulate lipopolysaccharide-induced tumor necrosis factor production in microglia. Whereas overactivation of microglia is associated with neuronal loss in brain diseases via reactive oxygen species (ROS) production and glutamate excitotoxicity, naïve (nonactivated) microglia are believed to generate little ROS under basal conditions, contributing to the modulation of synaptic activity and nerve tissue repair. However, the signaling pathways controlling basal ROS homeostasis in microglial cells are still poorly understood. Here we used time-lapse microscopy coupled with highly sensitive FRET biosensors (for detecting c-Src activation, ROS generation, and glutamate release) and lentivirus-mediated shRNA delivery to study the pathways involved in antioxidant-regulated ROS generation and how this associates with microglia-induced neuronal cell death. We report that 3-CQA abrogates the acquisition of an amoeboid morphology in microglia triggered by Aβ oligomers or the HIV Tat peptide. Moreover, 3-CQA deactivates c-Src tyrosine kinase and abrogates c-Src activation during proinflammatory microglia stimulation, which shuts off ROS production in these cells. Moreover, forced increment of c-Src catalytic activity by overexpressing an inducible c-Src heteromerization construct in microglia increases ROS production, abrogating the 3-CQA effects. Whereas oxidant (hydrogen peroxide) stimulation dramatically enhances glutamate release from microglia, such release is diminished by the 3-CQA inhibition of c-Src/ROS generation, significantly alleviating cell death in cultures from embryonic neurons. Overall, we provide further mechanistic insight into the modulation of ROS production in cortical microglia, indicating antioxidant-regulated c-Src function as a pathway for controlling microglia-triggered oxidative damage. [Display omitted] •3-O-Caffeoylquinic acid (3-CQA) displays systemic anti-inflammatory properties.•c-Src tyrosine kinase may be activated during inflammation in the CNS.•3-CQA deactivates c-Src in naïve cortical microglia, preventing ROS production.•3-CQA-triggered c-Src deactivation/ROS inhibition alleviates neuronal excitotoxicity by diminishing glutamate release from microglia.•Polyphenol esters may regulate neuronal viability by controlling c-Src/ROS/glutamate in cortical microglial cells.
ISSN:0891-5849
1873-4596
DOI:10.1016/j.freeradbiomed.2014.11.019