Disease mapping via negative binomial regression M‐quantiles

We introduce a semi‐parametric approach to ecological regression for disease mapping, based on modelling the regression M‐quantiles of a negative binomial variable. The proposed method is robust to outliers in the model covariates, including those due to measurement error, and can account for both s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2014-11, Vol.33 (27), p.4805-4824
Hauptverfasser: Chambers, Ray, Dreassi, Emanuela, Salvati, Nicola
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a semi‐parametric approach to ecological regression for disease mapping, based on modelling the regression M‐quantiles of a negative binomial variable. The proposed method is robust to outliers in the model covariates, including those due to measurement error, and can account for both spatial heterogeneity and spatial clustering. A simulation experiment based on the well‐known Scottish lip cancer data set is used to compare the M‐quantile modelling approach with a disease mapping approach based on a random effects model. This suggests that the M‐quantile approach leads to predicted relative risks with smaller root mean square error. The paper concludes with an illustrative application of the M‐quantile approach, mapping low birth weight incidence data for English Local Authority Districts for the years 2005–2010. Copyright © 2014 John Wiley & Sons, Ltd.
ISSN:0277-6715
1097-0258
DOI:10.1002/sim.6256