Construction of an ecological resistance surface model and its application in urban expansion simulations

Urban expansion models are useful tools to understand urbanization process and have been given much attention. However, urban expansion is a complicated socio-economic phenomenon that is affected by complex and volatile factors involving in great uncertainties. Therefore, the accurate simulation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geographical sciences 2015-02, Vol.25 (2), p.211-224
Hauptverfasser: Ye, Yuyao, Su, Yongxian, Zhang, Hong-ou, Liu, Kai, Wu, Qitao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Urban expansion models are useful tools to understand urbanization process and have been given much attention. However, urban expansion is a complicated socio-economic phenomenon that is affected by complex and volatile factors involving in great uncertainties. Therefore, the accurate simulation of the urban expansion process remains challenging. In this paper, we make an attempt to solve such uncertainty through a reversal process and view urban expansion as a process wherein the urban landscape overcomes resistance from other landscapes. We developed an innovative approach derived from the minimum cumulative resistance (MCR) model that involved the introduction of a relative resistance factor for dif- ferent source levels and the consideration of rigid constraints on urban expansion caused by ecological barriers. Using this approach, the urban expansion ecological resistance (UEER) model was created to describe ecological resistance surfaces suitable for simulating urban expansion and used to simulate urban expansion in Guangzhou. The study results demon- strate that the ecological resistance surface generated by the UEER model comprehensively reflects ecological resistance to urban expansion and indicates the spatial trends in urban expansion. The simulation results from the UEEIR-based model were more realistic and more accurately reflected ecological protection requirements than the conventional MCR-based model. These findings can enhance urban expansion simulation methods.
ISSN:1009-637X
1861-9568
DOI:10.1007/s11442-015-1163-1