Growth, net production, litter decomposition, and net nitrogen accumulation by epiphytic bryophytes in a tropical montane forest

To understand the ecological roles of epiphytic bryophytes in the carbon (C) and nitrogen (N) cycles of a tropical montane forest, we used samples in enclosures to estimate rates of growth, net production, and N accumulation by shoots in the canopy, and litterbags, to estimate rates of decomposition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotropica 1998-03, Vol.30 (1), p.12-23
Hauptverfasser: Clark, K.L, Nadkarni, N.M, Ghotz, H.L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To understand the ecological roles of epiphytic bryophytes in the carbon (C) and nitrogen (N) cycles of a tropical montane forest, we used samples in enclosures to estimate rates of growth, net production, and N accumulation by shoots in the canopy, and litterbags, to estimate rates of decomposition and N dynamics of epiphytic bryophyte litter in the canopy and on the forest floor in Monteverde, Costa Rica. Growth of epiphytic bryophytes was estimated at 30.0-49.9 percent/yr, net production at 122-203 g/m2/yr, and N accumulation at 1.8-3.0 g N/m2/yr. Cumulative mass loss from litterbags after one and two years in the canopy was 17 ± 2 and 19 ± 2 percent (mean ± 1 SE) of initial sample mass, respectively, and mass loss from litter and green shoots in litterbags after one year on the forest floor was 29 ± 2 and 45 ± 3 percent, respectively. Approximately 30 percent of the initial N mass was released rapidly from litter in both locations. Nitrogen loss from green shoots on the forest floor was greater; about 47 percent of the initial N mass was lost within the first three months. There was no evidence for net N immobilization by litter or green shoots, but the remaining N in litter was apparently recalcitrant. Annual net accumulation of C and N by epiphytic bryophytes was estimated at 37-64 g C/m2/yr and 0.8-1.3 g N/m2/yr, respectively. Previous research at this site indicated that epiphytic bryophytes retain inorganic N from atmospheric deposition to the canopy. Therefore, they play a major role in transforming N from mobile to highly recalcitrant forms in this ecosystem.
ISSN:0006-3606
1744-7429
DOI:10.1111/j.1744-7429.1998.tb00365.x