NO dissociation through ns, np, and nf Rydberg states: angular distributions

Velocity-mapped imaging and theoretical calculations have been used to study the angular distribution of the products of NO predissociation following its excitation to the 11s, 10p, 11p, and 9f Rydberg levels based on the NO(+) (X (2)Σ(+)) core. The Rydberg states were reached from the NO (A (2)Σ(+)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2014-01, Vol.140 (3), p.034315-034315
Hauptverfasser: Chen, J, Strangfeld, B R, Houston, P L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Velocity-mapped imaging and theoretical calculations have been used to study the angular distribution of the products of NO predissociation following its excitation to the 11s, 10p, 11p, and 9f Rydberg levels based on the NO(+) (X (2)Σ(+)) core. The Rydberg states were reached from the NO (A (2)Σ(+), v = 0, N = 2, J = 1.5) level prepared with strong alignment by excitation with linear polarization from NO (X (2)Π, v = 0, N = 1, J = 0.5). Ion dip spectra of the Rydberg states were recorded along with velocity-mapped images at the major peaks. The results are compared to calculations based on a previous theoretical approach modified to include transitions to states of Hund's case (d) coupling. The reasonable agreement shows the predictive value of the theory. The theory has also been used to reassess and explain previous results and to understand variations in the rate of photodissociation with components of the 10p and 11p Rydberg states.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4861662