N -methyl- N -nitrosourea-induced retinal degeneration in mice

Mouse retinal degeneration models have been investigated for many years in the hope of understanding the mechanism of photoreceptor cell death. N -methyl- N -nitrosourea (MNU) has been previously shown to induce outer retinal degeneration in mice. After MNU was intraperitoneally injected in C57/BL m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental eye research 2014-04, Vol.121, p.102-113
Hauptverfasser: Chen, Yuan-yuan, Liu, Shi-liang, Hu, Dan-ping, Xing, Yi-qiao, Shen, Yin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mouse retinal degeneration models have been investigated for many years in the hope of understanding the mechanism of photoreceptor cell death. N -methyl- N -nitrosourea (MNU) has been previously shown to induce outer retinal degeneration in mice. After MNU was intraperitoneally injected in C57/BL mice, we observed a gradual decrease in the outer nuclear layer (ONL) thickness associated with photoreceptor outer segment loss, bipolar cell dendritic retraction and reactive gliosis. Reactive gliosis was confirmed by increased GFAP protein levels. More serious damage to the central retina as opposed to the peripheral retina was found in the MNU-induced retinal degeneration model. Retinal ganglion cells (RGC) appear to be spared for at least two months after MNU treatment. Following retinal vessel labelling, we observed vascular complexes in the distal vessels, indicating retinal vessel damage. In the remnant retinal photoreceptor of the MNU-treated mouse, concentrated colouring nuclei were detected by electron microscopy, together with the loss of mitochondria and displaced remnant synaptic ribbons in the photoreceptor. We also observed decreased mitochondrial protein levels and increased amounts of nitrosylation/nitration in the photoreceptors. The mechanism of MNU-induced apoptosis may result from oxidative stress or the loss of retinal blood supply. MNU-induced mouse retinal degeneration in the outer retina is a useful animal model for photoreceptor degeneration diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP). •MNU-induced retinal degeneration causes the damage of photoreceptor and IPL.•MNU causes vascular complexes in distal peripheral vessels.•Photoreceptor mitochondria are vulnerable to MNU treatment.•MNU induced abnormal photoreceptor synaptic ribbons.
ISSN:0014-4835
1096-0007
DOI:10.1016/j.exer.2013.12.019