Cloning and characterization of the Vibrio cholerae genes encoding the utilization of iron from haemin and haemoglobin

Summary Vibrio cholerae can utilize haemin or haemoglobin as its sole source of iron. Four haem utilization mutants of a classical strain of V. cholerae were isolated. These mutations were complemented with pHUT1, a cosmid clone isolated from a library of wild‐type CA401 DNA. Two independent Tn5 ins...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 1993-02, Vol.7 (3), p.461-469
Hauptverfasser: Henderson, Douglas P., Payne, Shelley M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Vibrio cholerae can utilize haemin or haemoglobin as its sole source of iron. Four haem utilization mutants of a classical strain of V. cholerae were isolated. These mutations were complemented with pHUT1, a cosmid clone isolated from a library of wild‐type CA401 DNA. Two independent Tn5 insertions into the cloned sequence disrupted function in all of the complemented mutants. Escherichia coli 1017 transformed with pHUT1 failed to utilize haemin as an iron source; a second plasmid containing a different cloned fragment of V. cholerae DNA (pHUT3) was required in addition to pHUT1 to reconstitute the system in E. coli. Minicell analysis and SDS‐PAGE of protein fractions indicate that pHUT10 (a subclone of p>HUT1) encodes a 26 kDa inner membrane protein, and pHUT3 encodes a 77 kDa outer membrane protein. Loss of either protein by Tn5 mutagenesis abolishes haem utilization in E. coli. An E. coli hemA mutant that cannot synthesize porphyrins was transformed with the recombinant plasmids to determine whether the plasmids encoded the ability to transport the porphyrin as well as the iron. The transformants grew aerobically in media containing haemin, whereas the parental strain was unable to grow under these conditions. This indicates that V. cholerae haem‐iron utilization genes allow transport of the entire haem moiety into the cell.
ISSN:0950-382X
1365-2958
DOI:10.1111/j.1365-2958.1993.tb01137.x