Energetic Salts with π‑Stacking and Hydrogen-Bonding Interactions Lead the Way to Future Energetic Materials

Among energetic materials, there are two significant challenges facing researchers: 1) to develop ionic CHNO explosives with higher densities than their parent nonionic molecules and (2) to achieve a fine balance between high detonation performance and low sensitivity. We report a surprising energet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2015-02, Vol.137 (4), p.1697-1704
Hauptverfasser: Zhang, Jiaheng, Zhang, Qinghua, Vo, Thao T, Parrish, Damon A, Shreeve, Jean’ne M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Among energetic materials, there are two significant challenges facing researchers: 1) to develop ionic CHNO explosives with higher densities than their parent nonionic molecules and (2) to achieve a fine balance between high detonation performance and low sensitivity. We report a surprising energetic salt, hydroxylammonium 3-dinitromethanide-1,2,4-triazolone, that exhibits exceptional properties, viz., higher density, superior detonation performance, and improved thermal, impact, and friction stabilities, then those of its precursor, 3-dinitromethyl-1,2,4-triazolone. The solid-state structure features of the new energetic salt were investigated with X-ray diffraction which showed π-stacking and hydrogen-bonding interactions that contribute to closer packing and higher density. According to the experimental results and theoretical analysis, the newly designed energetic salt also gives rise to a workable compromise in high detonation properties and desirable stabilities. These findings will enhance the future prospects for rational energetic materials design and commence a new chapter in this field.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja5126275