Automatic identification of reticular pseudodrusen using multimodal retinal image analysis
To examine human performance and agreement on reticular pseudodrusen (RPD) detection and quantification by using single- and multimodality grading protocols and to describe and evaluate a machine learning system for the automatic detection and quantification of reticular pseudodrusen by using single...
Gespeichert in:
Veröffentlicht in: | Investigative ophthalmology & visual science 2015-01, Vol.56 (1), p.633-639 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To examine human performance and agreement on reticular pseudodrusen (RPD) detection and quantification by using single- and multimodality grading protocols and to describe and evaluate a machine learning system for the automatic detection and quantification of reticular pseudodrusen by using single- and multimodality information.
Color fundus, fundus autofluoresence, and near-infrared images of 278 eyes from 230 patients with or without presence of RPD were used in this study. All eyes were scored for presence of RPD during single- and multimodality setups by two experienced observers and a developed machine learning system. Furthermore, automatic quantification of RPD area was performed by the proposed system and compared with human delineations.
Observers obtained a higher performance and better interobserver agreement for RPD detection with multimodality grading, achieving areas under the receiver operating characteristic (ROC) curve of 0.940 and 0.958, and a κ agreement of 0.911. The proposed automatic system achieved an area under the ROC of 0.941 with a multimodality setup. Automatic RPD quantification resulted in an intraclass correlation (ICC) value of 0.704, which was comparable with ICC values obtained between single-modality manual delineations.
Observer performance and agreement for RPD identification improved significantly by using a multimodality grading approach. The developed automatic system showed similar performance as observers, and automatic RPD area quantification was in concordance with manual delineations. The proposed automatic system allows for a fast and accurate identification and quantification of RPD, opening the way for efficient quantitative imaging biomarkers in large data set analysis. |
---|---|
ISSN: | 0146-0404 1552-5783 |
DOI: | 10.1167/iovs.14-15019 |