Phase Transitions in a LiMn2O4 Nanowire Battery Observed by Operando Electron Microscopy

Fast charge–discharge process has been reported to give a high capacity loss. A nanobattery consisting of a single LiMn2O4 nanowire cathode, ionic liquid electrolyte and lithium titanium oxide anode was developed for in situ transmission electron microscopy. When it was fully charged or discharged w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2015-01, Vol.9 (1), p.626-632
Hauptverfasser: Lee, Soyeon, Oshima, Yoshifumi, Hosono, Eiji, Zhou, Haoshen, Kim, Kyungsu, Chang, Hansen M, Kanno, Ryoji, Takayanagi, Kunio
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fast charge–discharge process has been reported to give a high capacity loss. A nanobattery consisting of a single LiMn2O4 nanowire cathode, ionic liquid electrolyte and lithium titanium oxide anode was developed for in situ transmission electron microscopy. When it was fully charged or discharged within a range of 4 V in less than half an hour (corresponding average C rate: 2.5C), Li-rich and Li-poor phases were observed to be separated by a transition region, and coexisted during whole process. The phase transition region moved reversibly along the nanowire axis which corresponds to the [011] direction, allowing the volume fraction of both phases to change. In the electron diffraction patterns, the Li-rich phase was seen to have the (100) orientation with respect to the incident electron beam, while the Li-poor phase had the (111̅) orientation. The orientation was changed as the transition region moved. However, the nanowire did not fracture. This suggests that a LiMn2O4 nanowire has the advantage of preventing capacity fading at high charge rates.
ISSN:1936-0851
1936-086X
DOI:10.1021/nn505952k