Molecular Rescue of DYRK1A Overexpression in Cystathionine Beta Synthase-Deficient Mouse Brain by Enriched Environment Combined with Voluntary Exercise

Hyperhomocysteinemia resulting from cystathionine beta synthase (CBS) deficiency can produce cognitive dysfunction. We recently found that CBS-deficient mice exhibit increased expression of the serine/threonine kinase dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A (DYRK1A) in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular neuroscience 2015-02, Vol.55 (2), p.318-323
Hauptverfasser: Souchet, Benoit, Latour, Alizée, Gu, Yuchen, Daubigney, Fabrice, Paul, Jean-Louis, Delabar, Jean-Maurice, Janel, Nathalie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hyperhomocysteinemia resulting from cystathionine beta synthase (CBS) deficiency can produce cognitive dysfunction. We recently found that CBS-deficient mice exhibit increased expression of the serine/threonine kinase dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A (DYRK1A) in the brain. When dysregulated, DYRK1A contributes to the neurodegeneration, neuronal death, and loss of function observed in neurodegenerative diseases. However, brain plasticity can be improved by interventions like enriched environment combined with voluntary exercise (EE/VE). The present study sought to assess the effects of EE/VE on molecular mechanisms linked to DYRK1A overexpression in the brain of CBS-deficient mice. EE/VE was applied to 3-month-old female CBS-deficient mice for 1 month. Without intervention, CBS-deficient mice exhibited increased DYRK1A and decreased brain-derived neurotrophic factor (BDNF) levels in the cortex and hippocampus. However, EE/VE rescued these altered DYRK1A and BDNF levels in the hippocampus of CBS-deficient mice. We conclude that exercise combined with enriched environment can restore the altered molecular mechanisms in the brain of CBS-deficient mice.
ISSN:0895-8696
1559-1166
DOI:10.1007/s12031-014-0324-5