Inhibition of the mitochondrial fission protein dynamin-related protein 1 improves survival in a murine cardiac arrest model
Survival following sudden cardiac arrest is poor despite advances in cardiopulmonary resuscitation and the use of therapeutic hypothermia. Dynamin-related protein 1, a regulator of mitochondrial fission, is an important determinant of reactive oxygen species generation, myocardial necrosis, and left...
Gespeichert in:
Veröffentlicht in: | Critical care medicine 2015-02, Vol.43 (2), p.e38-e47 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Survival following sudden cardiac arrest is poor despite advances in cardiopulmonary resuscitation and the use of therapeutic hypothermia. Dynamin-related protein 1, a regulator of mitochondrial fission, is an important determinant of reactive oxygen species generation, myocardial necrosis, and left ventricular function following ischemia/reperfusion injury, but its role in cardiac arrest is unknown. We hypothesized that dynamin-related protein 1 inhibition would improve survival, cardiac hemodynamics, and mitochondrial function in an in vivo model of cardiac arrest.
Laboratory investigation.
University laboratory.
Anesthetized and ventilated adult female C57BL/6 wild-type mice underwent an 8-minute KCl-induced cardiac arrest followed by 90 seconds of cardiopulmonary resuscitation. Mice were then blindly randomized to a single IV injection of Mdivi-1 (0.24 mg/kg), a small molecule dynamin-related protein 1 inhibitor or vehicle (dimethyl sulfoxide).
Following resuscitation from cardiac arrest, mitochondrial fission was evidenced by dynamin-related protein 1 translocation to the mitochondrial membrane and a decrease in mitochondrial size. Mitochondrial fission was associated with increased lactate and evidence of oxidative damage. Mdivi-1 administration during cardiopulmonary resuscitation inhibited dynamin-related protein 1 activation, preserved mitochondrial morphology, and decreased oxidative damage. Mdivi-1 also reduced the time to return of spontaneous circulation (116 ± 4 vs 143 ± 7 s; p < 0.001) during cardiopulmonary resuscitation and enhanced myocardial performance post-return of spontaneous circulation. These improvements were associated with significant increases in survival (65% vs 33%) and improved neurological scores up to 72 hours post cardiac arrest.
Post-cardiac arrest inhibition of dynamin-related protein 1 improves time to return of spontaneous circulation and myocardial hemodynamics, resulting in improved survival and neurological outcomes in a murine model of cardiac arrest. Pharmacological targeting of mitochondrial fission may be a promising therapy for cardiac arrest. |
---|---|
ISSN: | 0090-3493 1530-0293 |
DOI: | 10.1097/CCM.0000000000000817 |