Investigation of the nanoviscosity effect of a G-quadruplex and single-strand DNA using fluorescence correlation spectroscopy

Guanine (G)-quadruplexes are of interest because of their presence in the telomere sequence and the oncogene promoter region. Their diffusion and change of structure, especially in high viscosity solutions, are important for understanding their dynamics. G-quadruplexes may have less effective viscos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2015-01, Vol.142 (2), p.025101-025101
Hauptverfasser: Lee, Dongkeun, Kim, Minjung, Kim, Soo Yong, Shin, Hyosup, Kim, Sok Won, Park, Inho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Guanine (G)-quadruplexes are of interest because of their presence in the telomere sequence and the oncogene promoter region. Their diffusion and change of structure, especially in high viscosity solutions, are important for understanding their dynamics. G-quadruplexes may have less effective viscosity (nanoviscosity) when they are smaller than the solvent molecules. In this paper, we report the difference in the diffusion dynamics of the G-rich DNA sequences of single-strand DNA (ssDNA) and the G-quadruplex in aqueous, sucrose, and polyethylene glycol (PEG) solutions. From experiments with aqueous and sucrose solutions, we confirm that a simple diffusion model according to the viscosity is appropriate. In the PEG experiments, the nanoviscosity effect is observed according to PEG's molecular weight. In the PEG 200 solution, both the ssDNA and the G-quadruplex possess macroviscosity. In the PEG 10,000 solution, the G-quadruplex possesses nanoviscosity and the ssDNA possesses macroviscosity, whereas, in the PEG 35,000 solution, both ssDNA and the G-quadruplex possess nanoviscosity. The experimental results are consistent with the theoretical predictions.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4905113