ROBUST PRECONDITIONING ESTIMATES FOR CONVECTION-DOMINATED ELLIPTIC PROBLEMS VIA A STREAMLINE POINCARÉ–FRIEDRICHS INEQUALITY

This paper is devoted to the streamline diffusion finite element method, combined with equivalent preconditioning, for solving convection-dominated elliptic problems. The preconditioner is obtained from the streamline diffusion inner product. It is proved that the obtained convergence is robust, i.e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2014-01, Vol.52 (6), p.2957-2976
Hauptverfasser: AXELSSON, OWE, KARÁTSON, JÁNOS, KOVÁCS, BALÁZS
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is devoted to the streamline diffusion finite element method, combined with equivalent preconditioning, for solving convection-dominated elliptic problems. The preconditioner is obtained from the streamline diffusion inner product. It is proved that the obtained convergence is robust, i.e., bounded independently of the perturbation parameter ε, for proper convection vector fields. The key to the estimates is an improved "streamline" Poincaré–Friedrichs inequality.
ISSN:0036-1429
1095-7170
DOI:10.1137/130940268