The effects of total gas pressure and Xe partial pressure on the properties of plasma display panels with two-opposite-electrode cells
The effects of total pressure and Xe partial pressure on the characteristics of an alternating-current plasma display panel with a two-opposite-electrode discharge cell configuration and a three-electrode surface-discharge cell configuration were investigated in terms of the following electro-optica...
Gespeichert in:
Veröffentlicht in: | Plasma sources science & technology 2014-04, Vol.23 (2), p.1-20 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effects of total pressure and Xe partial pressure on the characteristics of an alternating-current plasma display panel with a two-opposite-electrode discharge cell configuration and a three-electrode surface-discharge cell configuration were investigated in terms of the following electro-optical properties: breakdown voltage, sustain voltage, wall charge transfer curve, infrared emission characteristics, luminance and luminous efficacy. Despite the longer discharge gap length, the results of the experiment and three-dimensional plasma simulation indicated that the opposite-discharge configuration has a significantly lower breakdown voltage than the surface-discharge configuration. Furthermore, the ratio of the increase in the breakdown voltage for the opposite-discharge configuration to the incremental Xe partial pressure was found to be smaller than that of the surface-discharge configuration. Because of its low driving voltage and possible use of high-Xe partial pressure, the opposite-discharge mode exhibited a higher luminous efficacy compared with the surface-discharge mode. These results indicated that the two-opposite-electrode discharge cell configuration has a cost reduction potential in electronics as well as high efficacy for plasma displays. |
---|---|
ISSN: | 0963-0252 1361-6595 |
DOI: | 10.1088/0963-0252/23/2/02501 |