A new methodology for the in vivo estimation of the elastic constants that characterize the patient-specific biomechanical behavior of the human cornea
Abstract This work presents a methodology for the in vivo characterization of the complete biomechanical behavior of the human cornea of each patient. Specifically, the elastic constants of a hyperelastic, second-order Ogden model were estimated for 24 corneas corresponding to 12 patients. The finit...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanics 2015-01, Vol.48 (1), p.38-43 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract This work presents a methodology for the in vivo characterization of the complete biomechanical behavior of the human cornea of each patient. Specifically, the elastic constants of a hyperelastic, second-order Ogden model were estimated for 24 corneas corresponding to 12 patients. The finite element method was applied to simulate the deformation of human corneas due to non-contact tonometry, and an iterative search controlled by a genetic heuristic was used to estimate the elastic parameters that most closely approximates the simulated deformation to the real one. The results from a synthetic experiment showed that these parameters can be estimated with an error of about 5%. The results of 24 in vivo corneas showed an overlap of about 90% between simulation and real deformed cornea and a modified Hausdorff distance of 25 μm, which indicates the great accuracy of the proposed methodology. |
---|---|
ISSN: | 0021-9290 1873-2380 |
DOI: | 10.1016/j.jbiomech.2014.11.009 |