Rheology of reconstituted silk fibroin protein gels: the epitome of extreme mechanics

In nature, silk fibroin proteins assemble into hierarchical structures with dramatic mechanical properties. With the hope of creating new classes of on demand silk-based biomaterials, Bombyx mori silk is reconstituted back into stable aqueous solutions that can be reassembled into functionalized mat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2015-01, Vol.11 (4), p.756-761
Hauptverfasser: Tabatabai, A. Pasha, Kaplan, David L, Blair, Daniel L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In nature, silk fibroin proteins assemble into hierarchical structures with dramatic mechanical properties. With the hope of creating new classes of on demand silk-based biomaterials, Bombyx mori silk is reconstituted back into stable aqueous solutions that can be reassembled into functionalized materials; one strategy for reassembly is electrogelation. Electrogels (e-gels) are particularly versatile and can be produced using electrolysis with small DC electric fields. We characterize the linear and nonlinear rheological behavior of e-gels to provide fundamental insights into these distinct protein-based materials. We observe that e-gels form robust biopolymer networks that exhibit distinctive strain hardening and are recoverable from strains as large as γ = 27, i.e. 2700%. We propose a simple microscopic model that is consistent with local restructuring of single proteins within the e-gel network. Reconstituted solutions of silk protein are transformed into gels with significant elastic recovery and strain hardening features.
ISSN:1744-683X
1744-6848
DOI:10.1039/c4sm02079k