Defect detection for corner cracks in steel billets using a wavelet reconstruction method
Presently, automatic inspection algorithms are widely used to ensure high-quality products and achieve high productivity in the steelmaking industry. In this paper, we propose a vision-based method for detecting corner cracks on the surface of steel billets. Because of the presence of scales compose...
Gespeichert in:
Veröffentlicht in: | Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2014-02, Vol.31 (2), p.227-237 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Presently, automatic inspection algorithms are widely used to ensure high-quality products and achieve high productivity in the steelmaking industry. In this paper, we propose a vision-based method for detecting corner cracks on the surface of steel billets. Because of the presence of scales composed of oxidized substances, the billet surfaces are not uniform and vary considerably with the lighting conditions. To minimize the influence of scales and improve the accuracy of detection, a detection method based on a visual inspection algorithm is proposed. Wavelet reconstruction is used to reduce the effect of scales. Texture and morphological features are used to identify the corner cracks among the defective candidates. Finally, the experimental results show that the proposed algorithm is effective in detecting corner cracks on the surfaces of the steel billets. |
---|---|
ISSN: | 1084-7529 1520-8532 |
DOI: | 10.1364/josaa.31.000227 |