Large-Eddy Simulation of Stratified Turbulence. Part II: Application of the Stretched-Vortex Model to the Atmospheric Boundary Layer
The buoyancy-adjusted stretched-vortex subgrid-scale (SGS) model is assessed for a number of large-eddy simulations (LESs) corresponding to diverse atmospheric boundary layer conditions. The cases considered are free convection, a moderately stable boundary layer [first Global Energy and Water Excha...
Gespeichert in:
Veröffentlicht in: | Journal of the atmospheric sciences 2014-12, Vol.71 (12), p.4439-4460 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4460 |
---|---|
container_issue | 12 |
container_start_page | 4439 |
container_title | Journal of the atmospheric sciences |
container_volume | 71 |
creator | Matheou, Georgios Chung, Daniel |
description | The buoyancy-adjusted stretched-vortex subgrid-scale (SGS) model is assessed for a number of large-eddy simulations (LESs) corresponding to diverse atmospheric boundary layer conditions. The cases considered are free convection, a moderately stable boundary layer [first Global Energy and Water Exchanges (GEWEX) Atmospheric Boundary Layer Study (GABLS)] case, shallow cumulus [Barbados Oceanographic and Meteorological Experiment (BOMEX)], shallow precipitating cumulus [Rain in Cumulus over the Ocean (RICO)] and nocturnal stratocumulus [Second Dynamics and Chemistry of the Marine Stratocumulus (DYCOMS-II) field study RF01]. An identical LES setup, including advection discretization and SGS model parameters, is used for all cases, which is a stringent test on the ability of LES to accurately capture diverse conditions without any flow-adjustable parameters. The LES predictions agree well with observations and previously reported model results. A grid-resolution convergence study is carried out, and for all cases the mean profiles exhibit good grid-resolution independence, even for resolutions that are typically considered coarse. Second-order statistics, for example, variances, converge at finer resolutions compared to domain means. The simulations show that 90% of the turbulent kinetic energy (at each level) must be resolved to obtain sufficiently converged mean profiles. This empirical convergence criterion can be used as a guide in designing future LES runs. |
doi_str_mv | 10.1175/JAS-D-13-0306.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651429482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1639985309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-da94111cab21b1cfa6277a6923858da371a7875a6464189b2b0fa02325a2323b3</originalsourceid><addsrcrecordid>eNqNkT1vFDEQhi1EJI6EmtYSTRpfPP7YtemOfMChi0C6QGt5vV5uo731Ynslrs8Pj4-gFFSZYt6R5pmRZl6E3gNdAtTy4utqS64IcEI5rZbwCi1AMkqoqPRrtKCUMSI0U2_Q25TuaQlWwwI9bGz85cl12x7wtt_Pg819GHHo8DbHUne9b_HdHJt58KPzS_zdxozX6494NU1D757xvPPHEZ_dzrfkZ4jZ_8G3ofUDzuFvd5X3IU07H3uHP4V5bG084I09-HiGTjo7JP_un56iHzfXd5dfyObb5_XlakOcUCqT1moBAM42DBpwna1YXdtKM66kai2vwdaqlrYSlQClG9bQzlLGmbQl8YafovOnvVMMv2efstn3yflhsKMPczJQSRBMC8VegHKtleRUF_TDf-h9mONYDikU01ILLo_UxRPlYkgp-s5Msd-XFxig5migKQaaKwPcHA0s-gigr40B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629594359</pqid></control><display><type>article</type><title>Large-Eddy Simulation of Stratified Turbulence. Part II: Application of the Stretched-Vortex Model to the Atmospheric Boundary Layer</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Matheou, Georgios ; Chung, Daniel</creator><creatorcontrib>Matheou, Georgios ; Chung, Daniel</creatorcontrib><description>The buoyancy-adjusted stretched-vortex subgrid-scale (SGS) model is assessed for a number of large-eddy simulations (LESs) corresponding to diverse atmospheric boundary layer conditions. The cases considered are free convection, a moderately stable boundary layer [first Global Energy and Water Exchanges (GEWEX) Atmospheric Boundary Layer Study (GABLS)] case, shallow cumulus [Barbados Oceanographic and Meteorological Experiment (BOMEX)], shallow precipitating cumulus [Rain in Cumulus over the Ocean (RICO)] and nocturnal stratocumulus [Second Dynamics and Chemistry of the Marine Stratocumulus (DYCOMS-II) field study RF01]. An identical LES setup, including advection discretization and SGS model parameters, is used for all cases, which is a stringent test on the ability of LES to accurately capture diverse conditions without any flow-adjustable parameters. The LES predictions agree well with observations and previously reported model results. A grid-resolution convergence study is carried out, and for all cases the mean profiles exhibit good grid-resolution independence, even for resolutions that are typically considered coarse. Second-order statistics, for example, variances, converge at finer resolutions compared to domain means. The simulations show that 90% of the turbulent kinetic energy (at each level) must be resolved to obtain sufficiently converged mean profiles. This empirical convergence criterion can be used as a guide in designing future LES runs.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/JAS-D-13-0306.1</identifier><identifier>CODEN: JAHSAK</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Atmosphere ; Atmospheric boundary layer ; Atmospherics ; Boundary conditions ; Boundary layers ; Clouds ; Computational fluid dynamics ; Convergence ; Discretization ; Energy ; Kinetic energy ; Large eddy simulation ; Mathematical models ; Meteorology ; Physics ; Reynolds number ; Simulation ; Statistics ; Turbulence ; Turbulence models ; Vortices</subject><ispartof>Journal of the atmospheric sciences, 2014-12, Vol.71 (12), p.4439-4460</ispartof><rights>Copyright American Meteorological Society Dec 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-da94111cab21b1cfa6277a6923858da371a7875a6464189b2b0fa02325a2323b3</citedby><cites>FETCH-LOGICAL-c488t-da94111cab21b1cfa6277a6923858da371a7875a6464189b2b0fa02325a2323b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids></links><search><creatorcontrib>Matheou, Georgios</creatorcontrib><creatorcontrib>Chung, Daniel</creatorcontrib><title>Large-Eddy Simulation of Stratified Turbulence. Part II: Application of the Stretched-Vortex Model to the Atmospheric Boundary Layer</title><title>Journal of the atmospheric sciences</title><description>The buoyancy-adjusted stretched-vortex subgrid-scale (SGS) model is assessed for a number of large-eddy simulations (LESs) corresponding to diverse atmospheric boundary layer conditions. The cases considered are free convection, a moderately stable boundary layer [first Global Energy and Water Exchanges (GEWEX) Atmospheric Boundary Layer Study (GABLS)] case, shallow cumulus [Barbados Oceanographic and Meteorological Experiment (BOMEX)], shallow precipitating cumulus [Rain in Cumulus over the Ocean (RICO)] and nocturnal stratocumulus [Second Dynamics and Chemistry of the Marine Stratocumulus (DYCOMS-II) field study RF01]. An identical LES setup, including advection discretization and SGS model parameters, is used for all cases, which is a stringent test on the ability of LES to accurately capture diverse conditions without any flow-adjustable parameters. The LES predictions agree well with observations and previously reported model results. A grid-resolution convergence study is carried out, and for all cases the mean profiles exhibit good grid-resolution independence, even for resolutions that are typically considered coarse. Second-order statistics, for example, variances, converge at finer resolutions compared to domain means. The simulations show that 90% of the turbulent kinetic energy (at each level) must be resolved to obtain sufficiently converged mean profiles. This empirical convergence criterion can be used as a guide in designing future LES runs.</description><subject>Atmosphere</subject><subject>Atmospheric boundary layer</subject><subject>Atmospherics</subject><subject>Boundary conditions</subject><subject>Boundary layers</subject><subject>Clouds</subject><subject>Computational fluid dynamics</subject><subject>Convergence</subject><subject>Discretization</subject><subject>Energy</subject><subject>Kinetic energy</subject><subject>Large eddy simulation</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Physics</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Statistics</subject><subject>Turbulence</subject><subject>Turbulence models</subject><subject>Vortices</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkT1vFDEQhi1EJI6EmtYSTRpfPP7YtemOfMChi0C6QGt5vV5uo731Ynslrs8Pj4-gFFSZYt6R5pmRZl6E3gNdAtTy4utqS64IcEI5rZbwCi1AMkqoqPRrtKCUMSI0U2_Q25TuaQlWwwI9bGz85cl12x7wtt_Pg819GHHo8DbHUne9b_HdHJt58KPzS_zdxozX6494NU1D757xvPPHEZ_dzrfkZ4jZ_8G3ofUDzuFvd5X3IU07H3uHP4V5bG084I09-HiGTjo7JP_un56iHzfXd5dfyObb5_XlakOcUCqT1moBAM42DBpwna1YXdtKM66kai2vwdaqlrYSlQClG9bQzlLGmbQl8YafovOnvVMMv2efstn3yflhsKMPczJQSRBMC8VegHKtleRUF_TDf-h9mONYDikU01ILLo_UxRPlYkgp-s5Msd-XFxig5migKQaaKwPcHA0s-gigr40B</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Matheou, Georgios</creator><creator>Chung, Daniel</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><scope>7SU</scope><scope>FR3</scope></search><sort><creationdate>20141201</creationdate><title>Large-Eddy Simulation of Stratified Turbulence. Part II: Application of the Stretched-Vortex Model to the Atmospheric Boundary Layer</title><author>Matheou, Georgios ; Chung, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-da94111cab21b1cfa6277a6923858da371a7875a6464189b2b0fa02325a2323b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Atmosphere</topic><topic>Atmospheric boundary layer</topic><topic>Atmospherics</topic><topic>Boundary conditions</topic><topic>Boundary layers</topic><topic>Clouds</topic><topic>Computational fluid dynamics</topic><topic>Convergence</topic><topic>Discretization</topic><topic>Energy</topic><topic>Kinetic energy</topic><topic>Large eddy simulation</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Physics</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Statistics</topic><topic>Turbulence</topic><topic>Turbulence models</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matheou, Georgios</creatorcontrib><creatorcontrib>Chung, Daniel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><collection>Environmental Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matheou, Georgios</au><au>Chung, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-Eddy Simulation of Stratified Turbulence. Part II: Application of the Stretched-Vortex Model to the Atmospheric Boundary Layer</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>71</volume><issue>12</issue><spage>4439</spage><epage>4460</epage><pages>4439-4460</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><coden>JAHSAK</coden><abstract>The buoyancy-adjusted stretched-vortex subgrid-scale (SGS) model is assessed for a number of large-eddy simulations (LESs) corresponding to diverse atmospheric boundary layer conditions. The cases considered are free convection, a moderately stable boundary layer [first Global Energy and Water Exchanges (GEWEX) Atmospheric Boundary Layer Study (GABLS)] case, shallow cumulus [Barbados Oceanographic and Meteorological Experiment (BOMEX)], shallow precipitating cumulus [Rain in Cumulus over the Ocean (RICO)] and nocturnal stratocumulus [Second Dynamics and Chemistry of the Marine Stratocumulus (DYCOMS-II) field study RF01]. An identical LES setup, including advection discretization and SGS model parameters, is used for all cases, which is a stringent test on the ability of LES to accurately capture diverse conditions without any flow-adjustable parameters. The LES predictions agree well with observations and previously reported model results. A grid-resolution convergence study is carried out, and for all cases the mean profiles exhibit good grid-resolution independence, even for resolutions that are typically considered coarse. Second-order statistics, for example, variances, converge at finer resolutions compared to domain means. The simulations show that 90% of the turbulent kinetic energy (at each level) must be resolved to obtain sufficiently converged mean profiles. This empirical convergence criterion can be used as a guide in designing future LES runs.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JAS-D-13-0306.1</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4928 |
ispartof | Journal of the atmospheric sciences, 2014-12, Vol.71 (12), p.4439-4460 |
issn | 0022-4928 1520-0469 |
language | eng |
recordid | cdi_proquest_miscellaneous_1651429482 |
source | American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Atmosphere Atmospheric boundary layer Atmospherics Boundary conditions Boundary layers Clouds Computational fluid dynamics Convergence Discretization Energy Kinetic energy Large eddy simulation Mathematical models Meteorology Physics Reynolds number Simulation Statistics Turbulence Turbulence models Vortices |
title | Large-Eddy Simulation of Stratified Turbulence. Part II: Application of the Stretched-Vortex Model to the Atmospheric Boundary Layer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T05%3A56%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-Eddy%20Simulation%20of%20Stratified%20Turbulence.%20Part%20II:%20Application%20of%20the%20Stretched-Vortex%20Model%20to%20the%20Atmospheric%20Boundary%20Layer&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=Matheou,%20Georgios&rft.date=2014-12-01&rft.volume=71&rft.issue=12&rft.spage=4439&rft.epage=4460&rft.pages=4439-4460&rft.issn=0022-4928&rft.eissn=1520-0469&rft.coden=JAHSAK&rft_id=info:doi/10.1175/JAS-D-13-0306.1&rft_dat=%3Cproquest_cross%3E1639985309%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629594359&rft_id=info:pmid/&rfr_iscdi=true |