Large-Eddy Simulation of Stratified Turbulence. Part II: Application of the Stretched-Vortex Model to the Atmospheric Boundary Layer

The buoyancy-adjusted stretched-vortex subgrid-scale (SGS) model is assessed for a number of large-eddy simulations (LESs) corresponding to diverse atmospheric boundary layer conditions. The cases considered are free convection, a moderately stable boundary layer [first Global Energy and Water Excha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the atmospheric sciences 2014-12, Vol.71 (12), p.4439-4460
Hauptverfasser: Matheou, Georgios, Chung, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4460
container_issue 12
container_start_page 4439
container_title Journal of the atmospheric sciences
container_volume 71
creator Matheou, Georgios
Chung, Daniel
description The buoyancy-adjusted stretched-vortex subgrid-scale (SGS) model is assessed for a number of large-eddy simulations (LESs) corresponding to diverse atmospheric boundary layer conditions. The cases considered are free convection, a moderately stable boundary layer [first Global Energy and Water Exchanges (GEWEX) Atmospheric Boundary Layer Study (GABLS)] case, shallow cumulus [Barbados Oceanographic and Meteorological Experiment (BOMEX)], shallow precipitating cumulus [Rain in Cumulus over the Ocean (RICO)] and nocturnal stratocumulus [Second Dynamics and Chemistry of the Marine Stratocumulus (DYCOMS-II) field study RF01]. An identical LES setup, including advection discretization and SGS model parameters, is used for all cases, which is a stringent test on the ability of LES to accurately capture diverse conditions without any flow-adjustable parameters. The LES predictions agree well with observations and previously reported model results. A grid-resolution convergence study is carried out, and for all cases the mean profiles exhibit good grid-resolution independence, even for resolutions that are typically considered coarse. Second-order statistics, for example, variances, converge at finer resolutions compared to domain means. The simulations show that 90% of the turbulent kinetic energy (at each level) must be resolved to obtain sufficiently converged mean profiles. This empirical convergence criterion can be used as a guide in designing future LES runs.
doi_str_mv 10.1175/JAS-D-13-0306.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651429482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1639985309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-da94111cab21b1cfa6277a6923858da371a7875a6464189b2b0fa02325a2323b3</originalsourceid><addsrcrecordid>eNqNkT1vFDEQhi1EJI6EmtYSTRpfPP7YtemOfMChi0C6QGt5vV5uo731Ynslrs8Pj4-gFFSZYt6R5pmRZl6E3gNdAtTy4utqS64IcEI5rZbwCi1AMkqoqPRrtKCUMSI0U2_Q25TuaQlWwwI9bGz85cl12x7wtt_Pg819GHHo8DbHUne9b_HdHJt58KPzS_zdxozX6494NU1D757xvPPHEZ_dzrfkZ4jZ_8G3ofUDzuFvd5X3IU07H3uHP4V5bG084I09-HiGTjo7JP_un56iHzfXd5dfyObb5_XlakOcUCqT1moBAM42DBpwna1YXdtKM66kai2vwdaqlrYSlQClG9bQzlLGmbQl8YafovOnvVMMv2efstn3yflhsKMPczJQSRBMC8VegHKtleRUF_TDf-h9mONYDikU01ILLo_UxRPlYkgp-s5Msd-XFxig5migKQaaKwPcHA0s-gigr40B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629594359</pqid></control><display><type>article</type><title>Large-Eddy Simulation of Stratified Turbulence. Part II: Application of the Stretched-Vortex Model to the Atmospheric Boundary Layer</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Matheou, Georgios ; Chung, Daniel</creator><creatorcontrib>Matheou, Georgios ; Chung, Daniel</creatorcontrib><description>The buoyancy-adjusted stretched-vortex subgrid-scale (SGS) model is assessed for a number of large-eddy simulations (LESs) corresponding to diverse atmospheric boundary layer conditions. The cases considered are free convection, a moderately stable boundary layer [first Global Energy and Water Exchanges (GEWEX) Atmospheric Boundary Layer Study (GABLS)] case, shallow cumulus [Barbados Oceanographic and Meteorological Experiment (BOMEX)], shallow precipitating cumulus [Rain in Cumulus over the Ocean (RICO)] and nocturnal stratocumulus [Second Dynamics and Chemistry of the Marine Stratocumulus (DYCOMS-II) field study RF01]. An identical LES setup, including advection discretization and SGS model parameters, is used for all cases, which is a stringent test on the ability of LES to accurately capture diverse conditions without any flow-adjustable parameters. The LES predictions agree well with observations and previously reported model results. A grid-resolution convergence study is carried out, and for all cases the mean profiles exhibit good grid-resolution independence, even for resolutions that are typically considered coarse. Second-order statistics, for example, variances, converge at finer resolutions compared to domain means. The simulations show that 90% of the turbulent kinetic energy (at each level) must be resolved to obtain sufficiently converged mean profiles. This empirical convergence criterion can be used as a guide in designing future LES runs.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/JAS-D-13-0306.1</identifier><identifier>CODEN: JAHSAK</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Atmosphere ; Atmospheric boundary layer ; Atmospherics ; Boundary conditions ; Boundary layers ; Clouds ; Computational fluid dynamics ; Convergence ; Discretization ; Energy ; Kinetic energy ; Large eddy simulation ; Mathematical models ; Meteorology ; Physics ; Reynolds number ; Simulation ; Statistics ; Turbulence ; Turbulence models ; Vortices</subject><ispartof>Journal of the atmospheric sciences, 2014-12, Vol.71 (12), p.4439-4460</ispartof><rights>Copyright American Meteorological Society Dec 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-da94111cab21b1cfa6277a6923858da371a7875a6464189b2b0fa02325a2323b3</citedby><cites>FETCH-LOGICAL-c488t-da94111cab21b1cfa6277a6923858da371a7875a6464189b2b0fa02325a2323b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids></links><search><creatorcontrib>Matheou, Georgios</creatorcontrib><creatorcontrib>Chung, Daniel</creatorcontrib><title>Large-Eddy Simulation of Stratified Turbulence. Part II: Application of the Stretched-Vortex Model to the Atmospheric Boundary Layer</title><title>Journal of the atmospheric sciences</title><description>The buoyancy-adjusted stretched-vortex subgrid-scale (SGS) model is assessed for a number of large-eddy simulations (LESs) corresponding to diverse atmospheric boundary layer conditions. The cases considered are free convection, a moderately stable boundary layer [first Global Energy and Water Exchanges (GEWEX) Atmospheric Boundary Layer Study (GABLS)] case, shallow cumulus [Barbados Oceanographic and Meteorological Experiment (BOMEX)], shallow precipitating cumulus [Rain in Cumulus over the Ocean (RICO)] and nocturnal stratocumulus [Second Dynamics and Chemistry of the Marine Stratocumulus (DYCOMS-II) field study RF01]. An identical LES setup, including advection discretization and SGS model parameters, is used for all cases, which is a stringent test on the ability of LES to accurately capture diverse conditions without any flow-adjustable parameters. The LES predictions agree well with observations and previously reported model results. A grid-resolution convergence study is carried out, and for all cases the mean profiles exhibit good grid-resolution independence, even for resolutions that are typically considered coarse. Second-order statistics, for example, variances, converge at finer resolutions compared to domain means. The simulations show that 90% of the turbulent kinetic energy (at each level) must be resolved to obtain sufficiently converged mean profiles. This empirical convergence criterion can be used as a guide in designing future LES runs.</description><subject>Atmosphere</subject><subject>Atmospheric boundary layer</subject><subject>Atmospherics</subject><subject>Boundary conditions</subject><subject>Boundary layers</subject><subject>Clouds</subject><subject>Computational fluid dynamics</subject><subject>Convergence</subject><subject>Discretization</subject><subject>Energy</subject><subject>Kinetic energy</subject><subject>Large eddy simulation</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Physics</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Statistics</subject><subject>Turbulence</subject><subject>Turbulence models</subject><subject>Vortices</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkT1vFDEQhi1EJI6EmtYSTRpfPP7YtemOfMChi0C6QGt5vV5uo731Ynslrs8Pj4-gFFSZYt6R5pmRZl6E3gNdAtTy4utqS64IcEI5rZbwCi1AMkqoqPRrtKCUMSI0U2_Q25TuaQlWwwI9bGz85cl12x7wtt_Pg819GHHo8DbHUne9b_HdHJt58KPzS_zdxozX6494NU1D757xvPPHEZ_dzrfkZ4jZ_8G3ofUDzuFvd5X3IU07H3uHP4V5bG084I09-HiGTjo7JP_un56iHzfXd5dfyObb5_XlakOcUCqT1moBAM42DBpwna1YXdtKM66kai2vwdaqlrYSlQClG9bQzlLGmbQl8YafovOnvVMMv2efstn3yflhsKMPczJQSRBMC8VegHKtleRUF_TDf-h9mONYDikU01ILLo_UxRPlYkgp-s5Msd-XFxig5migKQaaKwPcHA0s-gigr40B</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Matheou, Georgios</creator><creator>Chung, Daniel</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><scope>7SU</scope><scope>FR3</scope></search><sort><creationdate>20141201</creationdate><title>Large-Eddy Simulation of Stratified Turbulence. Part II: Application of the Stretched-Vortex Model to the Atmospheric Boundary Layer</title><author>Matheou, Georgios ; Chung, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-da94111cab21b1cfa6277a6923858da371a7875a6464189b2b0fa02325a2323b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Atmosphere</topic><topic>Atmospheric boundary layer</topic><topic>Atmospherics</topic><topic>Boundary conditions</topic><topic>Boundary layers</topic><topic>Clouds</topic><topic>Computational fluid dynamics</topic><topic>Convergence</topic><topic>Discretization</topic><topic>Energy</topic><topic>Kinetic energy</topic><topic>Large eddy simulation</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Physics</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Statistics</topic><topic>Turbulence</topic><topic>Turbulence models</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matheou, Georgios</creatorcontrib><creatorcontrib>Chung, Daniel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><collection>Environmental Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matheou, Georgios</au><au>Chung, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-Eddy Simulation of Stratified Turbulence. Part II: Application of the Stretched-Vortex Model to the Atmospheric Boundary Layer</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>71</volume><issue>12</issue><spage>4439</spage><epage>4460</epage><pages>4439-4460</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><coden>JAHSAK</coden><abstract>The buoyancy-adjusted stretched-vortex subgrid-scale (SGS) model is assessed for a number of large-eddy simulations (LESs) corresponding to diverse atmospheric boundary layer conditions. The cases considered are free convection, a moderately stable boundary layer [first Global Energy and Water Exchanges (GEWEX) Atmospheric Boundary Layer Study (GABLS)] case, shallow cumulus [Barbados Oceanographic and Meteorological Experiment (BOMEX)], shallow precipitating cumulus [Rain in Cumulus over the Ocean (RICO)] and nocturnal stratocumulus [Second Dynamics and Chemistry of the Marine Stratocumulus (DYCOMS-II) field study RF01]. An identical LES setup, including advection discretization and SGS model parameters, is used for all cases, which is a stringent test on the ability of LES to accurately capture diverse conditions without any flow-adjustable parameters. The LES predictions agree well with observations and previously reported model results. A grid-resolution convergence study is carried out, and for all cases the mean profiles exhibit good grid-resolution independence, even for resolutions that are typically considered coarse. Second-order statistics, for example, variances, converge at finer resolutions compared to domain means. The simulations show that 90% of the turbulent kinetic energy (at each level) must be resolved to obtain sufficiently converged mean profiles. This empirical convergence criterion can be used as a guide in designing future LES runs.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JAS-D-13-0306.1</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4928
ispartof Journal of the atmospheric sciences, 2014-12, Vol.71 (12), p.4439-4460
issn 0022-4928
1520-0469
language eng
recordid cdi_proquest_miscellaneous_1651429482
source American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Atmosphere
Atmospheric boundary layer
Atmospherics
Boundary conditions
Boundary layers
Clouds
Computational fluid dynamics
Convergence
Discretization
Energy
Kinetic energy
Large eddy simulation
Mathematical models
Meteorology
Physics
Reynolds number
Simulation
Statistics
Turbulence
Turbulence models
Vortices
title Large-Eddy Simulation of Stratified Turbulence. Part II: Application of the Stretched-Vortex Model to the Atmospheric Boundary Layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T05%3A56%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-Eddy%20Simulation%20of%20Stratified%20Turbulence.%20Part%20II:%20Application%20of%20the%20Stretched-Vortex%20Model%20to%20the%20Atmospheric%20Boundary%20Layer&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=Matheou,%20Georgios&rft.date=2014-12-01&rft.volume=71&rft.issue=12&rft.spage=4439&rft.epage=4460&rft.pages=4439-4460&rft.issn=0022-4928&rft.eissn=1520-0469&rft.coden=JAHSAK&rft_id=info:doi/10.1175/JAS-D-13-0306.1&rft_dat=%3Cproquest_cross%3E1639985309%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629594359&rft_id=info:pmid/&rfr_iscdi=true