Large-Eddy Simulation of Stratified Turbulence. Part II: Application of the Stretched-Vortex Model to the Atmospheric Boundary Layer

The buoyancy-adjusted stretched-vortex subgrid-scale (SGS) model is assessed for a number of large-eddy simulations (LESs) corresponding to diverse atmospheric boundary layer conditions. The cases considered are free convection, a moderately stable boundary layer [first Global Energy and Water Excha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the atmospheric sciences 2014-12, Vol.71 (12), p.4439-4460
Hauptverfasser: Matheou, Georgios, Chung, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The buoyancy-adjusted stretched-vortex subgrid-scale (SGS) model is assessed for a number of large-eddy simulations (LESs) corresponding to diverse atmospheric boundary layer conditions. The cases considered are free convection, a moderately stable boundary layer [first Global Energy and Water Exchanges (GEWEX) Atmospheric Boundary Layer Study (GABLS)] case, shallow cumulus [Barbados Oceanographic and Meteorological Experiment (BOMEX)], shallow precipitating cumulus [Rain in Cumulus over the Ocean (RICO)] and nocturnal stratocumulus [Second Dynamics and Chemistry of the Marine Stratocumulus (DYCOMS-II) field study RF01]. An identical LES setup, including advection discretization and SGS model parameters, is used for all cases, which is a stringent test on the ability of LES to accurately capture diverse conditions without any flow-adjustable parameters. The LES predictions agree well with observations and previously reported model results. A grid-resolution convergence study is carried out, and for all cases the mean profiles exhibit good grid-resolution independence, even for resolutions that are typically considered coarse. Second-order statistics, for example, variances, converge at finer resolutions compared to domain means. The simulations show that 90% of the turbulent kinetic energy (at each level) must be resolved to obtain sufficiently converged mean profiles. This empirical convergence criterion can be used as a guide in designing future LES runs.
ISSN:0022-4928
1520-0469
DOI:10.1175/JAS-D-13-0306.1