Study on Mold Slag with High Al sub(2)O sub(3) Content for High Aluminum Steel

The slag-steel equilibrium reaction between the newly developed mold slag ND-MSL and 20Mn23AlV steel has been studied at high temperatures in the laboratory. The crystal morphology, microanalysis, and phase analysis of the original and final ND-MSL slags were studied by scanning electron microscopy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2014-04, Vol.45 (2), p.540-546
Hauptverfasser: Wang, Qiang, Sun, Min, Qiu, Shengtao, Tian, Zhiling, Zhu, Guoling, Wang, Longmei, Zhao, Pei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The slag-steel equilibrium reaction between the newly developed mold slag ND-MSL and 20Mn23AlV steel has been studied at high temperatures in the laboratory. The crystal morphology, microanalysis, and phase analysis of the original and final ND-MSL slags were studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). Results show that, in the final ND-MSL slag, the constitution of SiO sub(2) decreased by 0.7 wt pct and Al sub(2)O sub(3) increased by 6.46 wt pct, while the melting temperature, viscosity, and crystallization rate increased by 62 K, 0.66 dPa s, and 15 pct, respectively. NaAlSi sub(3)O sub(8) and CaAl sub(2)Si sub(2)O sub(8) were found to be precipitated in the final ND-MSL slag. Both the original and final ND-MSL slags have a small amount of LiF crystal and good glass form. The ND-MSL slag has little change in the composition and properties compared with the two currently used mold slags.
ISSN:1073-5615
1543-1916
DOI:10.1007/s11663-013-9929-2