Lone pair-π interaction-induced generation of non-interpenetrated and photochromic cuboid 3-D naphthalene diimide coordination networks
Interpenetration is an intrinsic behaviour for the porous coordination networks. To prevent the interpenetration, a common strategy is the imposition of geometric or steric restrictions by incorporating bulky moieties into organic tectons. So far, most of the available incorporations have been achie...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2015-01, Vol.44 (2), p.653-658 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Interpenetration is an intrinsic behaviour for the porous coordination networks. To prevent the interpenetration, a common strategy is the imposition of geometric or steric restrictions by incorporating bulky moieties into organic tectons. So far, most of the available incorporations have been achieved through a covalent connection, while few involved in the non-covalent weak interactions. In this paper, we have reported that such interpenetration can be prevented by the less common lone pair-π interactions. By imposing the lone pair-π interactions through the addition of lone-pair-bearing N-methylpyrrolidin-2-one or iodine, combinations of rigid naphthalene diimide tectons bearing two divergently oriented pyridyl units at both imide extremities with ZnSiF6 led to non-interpenetrated cuboid 3-D coordination networks that should have been interpenetrated. In addition, such close-contacting lone pair-π interactions between electron donors and acceptors have also been demonstrated to play a key role in their photochromic properties. |
---|---|
ISSN: | 1477-9226 1477-9234 |
DOI: | 10.1039/c4dt03124e |