Comparison of fatty acid analysis methods for assessing biorefinery applicability of wastewater cultivated microalgae
In this study, we compared the performances of four different gas chromatography (GC) based microalgal fatty acid analysis methods that are typically applied to biorefinery research using wastewater-adapted microalgae. Compared with the HP-5-type non-polar column, WAX-type polar columns exhibited ex...
Gespeichert in:
Veröffentlicht in: | Talanta (Oxford) 2012-08, Vol.97, p.103-110 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we compared the performances of four different gas chromatography (GC) based microalgal fatty acid analysis methods that are typically applied to biorefinery research using wastewater-adapted microalgae. Compared with the HP-5-type non-polar column, WAX-type polar columns exhibited excellent abilities to quantitatively separate C16-C18 polyunsaturated fatty acids (PUFAs) from selected wastewater-adapted microalgae (Chlorella vulgaris, Ankistrodesmus gracilis and Scenedesmus quadricauda) isolates. GC-mass spectroscopy (MS) using the WAX-type polar column provided the strongest detection sensitivity among the tested methods by lowest detection limit, and GC-flame ionized detector (FID) with the same polar column exhibited nearly consistent results to GC-MS analysis. Our statistical comparison of microalgal fatty acid composition profiles generated using various GC methods, microalgal resources and culture media (wastewater, BG11 and nitrogen limitation) suggested that an appropriate GC method and algal resource choice are more important than the optimization of culture conditions to evaluate the applicability of microalgal biorefinery using wastewater resources.
► We added more explanations regarding the lack-of-fit tests and F-ratio. ► We added discussion about the differences of FA profiles among 3 microalgae. ► We corrected additional errors in terms, units or English usage as suggested. |
---|---|
ISSN: | 0039-9140 1873-3573 |
DOI: | 10.1016/j.talanta.2012.04.002 |