Synthesis of an amino-functionalized metal–organic framework at a nanoscale level for gold nanoparticle deposition and catalysis

In this study, highly dispersed Au nanoparticles have been immobilized on amino-functionalized metal-organic frameworks (MOFs) viaa novel absorption/reduction method in solution. The amino functionality of the MOF rapidly coordinated with HAuCl sub(4) and acted as the Au(0) precursor in the absence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2014-01, Vol.2 (48), p.20588-20596
Hauptverfasser: Luan, Yi, Qi, Yue, Gao, Hongyi, Zheng, Nannan, Wang, Ge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, highly dispersed Au nanoparticles have been immobilized on amino-functionalized metal-organic frameworks (MOFs) viaa novel absorption/reduction method in solution. The amino functionality of the MOF rapidly coordinated with HAuCl sub(4) and acted as the Au(0) precursor in the absence of protecting agents. The resulting Au[at]MOF catalyst was well dispersed in aqueous media taking advantage of its well-defined and uniform sizes and nanomorphologies. The as-synthesized Au[at]MOF catalyst exhibited high catalytic activities in a wide variety of reactions under ambient conditions, such as the base-free aerobic oxidation of alcohols and oxidation/imine formation/reduction reaction sequences. Furthermore, the Au[at]MOF catalyst can be easily recovered and reused several times without leaching of metals or significant loss of activity.
ISSN:2050-7488
2050-7496
DOI:10.1039/c4ta04311a