Analysis of the Deformation Behavior of Magnesium-Rare Earth Alloys Mg-2 pct Mn-1 pct Rare Earth and Mg-5 pct Y-4 pct Rare Earth by In Situ Energy-Dispersive X-ray Synchrotron Diffraction and Elasto-Plastic Self-Consistent Modeling
The deformation behavior of the Mg-RE alloys ME21 and WE54 was investigated. Although both alloys contain rare earth elements, which alter and weaken the texture, the flow curves of the alloys deviate significantly, especially in uniaxial compression test. Apart from the higher strength of the WE54...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2014-11, Vol.45 (12), p.5721-5735 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The deformation behavior of the Mg-RE alloys ME21 and WE54 was investigated. Although both alloys contain rare earth elements, which alter and weaken the texture, the flow curves of the alloys deviate significantly, especially in uniaxial compression test. Apart from the higher strength of the WE54 alloy, the compression flow curve does not exhibit the typical sigmoidal shape, which is associated with tension twinning. However, optical microscopy, X-ray texture measurements, and EBSD analysis reveal the activity of tension twinning. The combination of
in situ
energy-dispersive X-ray synchrotron diffraction and EPSC modeling was used to analyze these differences. The investigation reveals that twin propagation is decelerated in the WE54 alloy, which requires a change of the twinning scheme from the ‘finite initial fraction’ to the ‘continuity’ assumption. Furthermore, an enhanced activity of the 〈
c
+
a
〉 pyramidal slip system was observed in case of the WE54 alloy. |
---|---|
ISSN: | 1073-5623 1543-1940 |
DOI: | 10.1007/s11661-014-2533-5 |