Conductance recovery and spin polarization in boron and nitrogen co-doped graphene nanoribbons
We present an ab initio study of the structural, electronic, and quantum transport properties of B–N-complex edge-doped graphene nanoribbons (GNRs). We find that the B–N edge codoping is energetically a very favorable process and furthermore can achieve novel doping effects that are absent for the s...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2015-01, Vol.81, p.339-346 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present an ab initio study of the structural, electronic, and quantum transport properties of B–N-complex edge-doped graphene nanoribbons (GNRs). We find that the B–N edge codoping is energetically a very favorable process and furthermore can achieve novel doping effects that are absent for the single B or N doping. The compensation effect between B and N is predicted to generally recover the excellent electronic transport properties of pristine GNRs. For the zigzag GNRs, however, the spatially localized B–N defect states selectively destroy the doped-side spin-polarized GNR edge currents at the valence and conduction band edges. We show that the energetically and spatially spin-polarized currents survive even in the fully ferromagnetic metallic state and heterojunction configurations. This suggests a simple yet efficient scheme to achieve effectively smooth GNR edges and graphene-based spintronic devices. |
---|---|
ISSN: | 0008-6223 1873-3891 |
DOI: | 10.1016/j.carbon.2014.09.066 |