Quantitative lung ventilation using Fourier decomposition MRI; comparison and initial study

Objective The Fourier decomposition (FD) method is a noninvasive method for assessing ventilation and perfusion-related information in the lungs, but the lack of quantifiable values is a drawback. We demonstrate a novel technique for quantification of the FD ventilation maps, compare it to two publi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magma (New York, N.Y.) N.Y.), 2014-12, Vol.27 (6), p.467-476
Hauptverfasser: Kjørstad, Åsmund, Corteville, Dominique M. R., Henzler, Thomas, Schmid-Bindert, Gerald, Hodneland, Erlend, Zöllner, Frank G., Schad, Lothar R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objective The Fourier decomposition (FD) method is a noninvasive method for assessing ventilation and perfusion-related information in the lungs, but the lack of quantifiable values is a drawback. We demonstrate a novel technique for quantification of the FD ventilation maps, compare it to two published methods, and show results from both healthy volunteers and patients diagnosed with lung cancer. Materials and methods We quantified the standard FD ventilation images by utilizing additional information, i.e., the zero-frequency component image, which is also obtained from the Fourier analysis. This image acts as a baseline for the changes recorded in the FD ventilation image and can therefore be used to calculate the ventilation. Using this technique, we compared the ventilation values from ten healthy volunteers and ten patients to two previously published methods for quantitative ventilation assessment. Results All methods showed good overall agreement (mean difference between the methods was 14–38 ml/min). The mean minute ventilation for the FD method was calculated to be 693 ml/min for a 2D slice, which is in the expected range. Conclusion The zero-frequency component image can be used as a baseline to quantify the FD ventilation maps. Our initial study showed good agreement with published methods in healthy volunteers, but less so in patients with lung cancer.
ISSN:0968-5243
1352-8661
DOI:10.1007/s10334-014-0432-9