Speaker adaptations in sparse training data for improved speaker verification
The over-training problem in speaker verification occurs when modelling a speaker with sparse training data. The authors propose to solve this problem by employing effective speaker adaptations, using a hybrid version of the maximum a posteriori and maximum likelihood linear regression methods. Expe...
Gespeichert in:
Veröffentlicht in: | Electronics letters 2000-02, Vol.36 (4), p.1-1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The over-training problem in speaker verification occurs when modelling a speaker with sparse training data. The authors propose to solve this problem by employing effective speaker adaptations, using a hybrid version of the maximum a posteriori and maximum likelihood linear regression methods. Experimental results show that the speaker verification system, using the proposed hybrid adaptation scheme, outperforms systems based on speaker models without adaptation by a factor of up to 5. |
---|---|
ISSN: | 0013-5194 1350-911X |