Speaker adaptations in sparse training data for improved speaker verification

The over-training problem in speaker verification occurs when modelling a speaker with sparse training data. The authors propose to solve this problem by employing effective speaker adaptations, using a hybrid version of the maximum a posteriori and maximum likelihood linear regression methods. Expe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics letters 2000-02, Vol.36 (4), p.1-1
Hauptverfasser: Ahn, Sungjoo, Ko, Hanseok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The over-training problem in speaker verification occurs when modelling a speaker with sparse training data. The authors propose to solve this problem by employing effective speaker adaptations, using a hybrid version of the maximum a posteriori and maximum likelihood linear regression methods. Experimental results show that the speaker verification system, using the proposed hybrid adaptation scheme, outperforms systems based on speaker models without adaptation by a factor of up to 5.
ISSN:0013-5194
1350-911X