A New Concept of Multimode Magnetorheological Brake Design
This paper presents a magnetorheological (MR) brake design by using additional squeeze working mode to an existing conventional rotational shear. The MR brake was designed with consideration given to a new concept of braking mechanism with the help of magnetic simulation. Important parameters such a...
Gespeichert in:
Veröffentlicht in: | Key engineering materials 2014-04, Vol.605, p.271-274 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a magnetorheological (MR) brake design by using additional squeeze working mode to an existing conventional rotational shear. The MR brake was designed with consideration given to a new concept of braking mechanism with the help of magnetic simulation. Important parameters such as disc brake dimensions, clearance gap and electromagnetic coil configuration were taken into account when constructed the MR brake. Simulation results showed that the magnetic field strength was at best by having the magnetic coil beside the non-magnetic material, which was located at the end of the outer diameter. Meanwhile, the value of magnetic field was greater than when a small squeeze gap was applied. Eventually, the design will provide an opportunity to study and consequently understand on how the MR fluids react to such operating condition in order to be realized in the MR brake. |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/www.scientific.net/KEM.605.271 |