hierarchical Bayesian approach for the analysis of climate change impact on runoff extremes

In this study the impact of climate change on runoff extremes is investigated over the Pacific Northwest (PNW). This paper aims to address the question of how the runoff extremes change in the future compared to the historical time period, investigate the different behaviors of the regional climate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrological processes 2014-12, Vol.28 (26), p.6292-6308
Hauptverfasser: Najafi, M. R, Moradkhani, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study the impact of climate change on runoff extremes is investigated over the Pacific Northwest (PNW). This paper aims to address the question of how the runoff extremes change in the future compared to the historical time period, investigate the different behaviors of the regional climate models (RCMs) regarding the runoff extremes and assess the seasonal variations of runoff extremes. Hydrologic modeling is performed by the variable infiltration capacity (VIC) model at a 1/8° resolution and the model is driven by climate scenarios provided by the North American Regional Climate Change Assessment Program (NARCCAP) including nine regional climate model (RCM) simulations. Analysis is performed for both the historical (1971–2000) and future (2041–2070) time periods. Downscaling of the climate variables including precipitation, maximum and minimum temperature and wind speed is done using the quantile‐mapping (QM) approach. A spatial hierarchical Bayesian model is then developed to analyse the annual maximum runoff in different seasons for both historical and future time periods. The estimated spatial changes in extreme runoffs over the future period vary depending on the RCM driving the hydrologic model. The hierarchical Bayesian model characterizes the spatial variations in the marginal distributions of the General Extreme Value (GEV) parameters and the corresponding 100‐year return level runoffs. Results show an increase in the 100‐year return level runoffs for most regions in particular over the high elevation areas during winter. The Canadian portions of the study region reflect higher increases during spring. However, reduction of extreme events in several regions is projected during summer. Copyright © 2013 John Wiley & Sons, Ltd.
ISSN:0885-6087
1099-1085
DOI:10.1002/hyp.10113