Total Variation Regularization for Manifold-Valued Data

We consider total variation (TV) minimization for manifold-valued data. We propose a cyclic proximal point algorithm and a parallel proximal point algorithm to minimize TV functionals with $\ell pi $-type data terms in the manifold case. These algorithms are based on iterative geodesic averaging whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on imaging sciences 2014-01, Vol.7 (4), p.2226-2257
Hauptverfasser: Weinmann, Andreas, Demaret, Laurent, Storath, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider total variation (TV) minimization for manifold-valued data. We propose a cyclic proximal point algorithm and a parallel proximal point algorithm to minimize TV functionals with $\ell pi $-type data terms in the manifold case. These algorithms are based on iterative geodesic averaging which makes them easily applicable to a large class of data manifolds. As an application, we consider denoising images which take their values in a manifold. We apply our algorithms to diffusion tensor images and interferometric SAR images as well as sphere- and cylinder-valued images. For the class of Cartan--Hadamard manifolds (which includes the data space in diffusion tensor imaging) we show the convergence of the proposed TV minimizing algorithms to a global minimizer.
ISSN:1936-4954
1936-4954
DOI:10.1137/130951075