On Achieving Capture Power Safety in At-Speed Scan-Based Logic BIST

The applicability of at-speed scan-based logic built-in self-test (BIST) is being severely challenged by excessive capture power that may cause erroneous test responses even for good circuits. Different from conventional low-power BIST, this paper is the first to explicitly focus on achieving captur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2014, Vol.E97.D(10), pp.2706-2718
Hauptverfasser: TOMITA, Akihiro, WEN, Xiaoqing, SATO, Yasuo, KAJIHARA, Seiji, MIYASE, Kohei, HOLST, Stefan, GIRARD, Patrick, TEHRANIPOOR, Mohammad, WANG, Laung-Terng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The applicability of at-speed scan-based logic built-in self-test (BIST) is being severely challenged by excessive capture power that may cause erroneous test responses even for good circuits. Different from conventional low-power BIST, this paper is the first to explicitly focus on achieving capture power safety with a novel and practical scheme, called capture-power-safe logic BIST (CPS-LBIST). The basic idea is to identify all possibly-erroneous test responses caused by excessive capture power and use the well-known approach of masking (bit-masking, slice-masking,vector-masking) to block them from reaching the multiple-input signature register(MISR). Experiments with large benchmark circuits and a large industrial circuit demonstrate that CPS-LBIST can achieve capture power safety with negligible impact on test quality and circuit overhead.
ISSN:0916-8532
1745-1361
DOI:10.1587/transinf.2014EDP7039