A multi-innovation generalized extended stochastic gradient algorithm for output nonlinear autoregressive moving average systems

This paper proposes a generalized extended stochastic gradient (GESG) algorithm for estimating the parameters of a class of Wiener nonlinear autoregressive moving average systems using the gradient search. In order to improve the convergence rates of the GESG algorithm, a multi-innovation GESG algor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2014-11, Vol.247, p.218-224
Hauptverfasser: Hu, Yuanbiao, Liu, Baolin, Zhou, Qin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a generalized extended stochastic gradient (GESG) algorithm for estimating the parameters of a class of Wiener nonlinear autoregressive moving average systems using the gradient search. In order to improve the convergence rates of the GESG algorithm, a multi-innovation GESG algorithm is derived. The simulation results indicate that the proposed algorithms can effectively estimate the parameters of a class of output nonlinear systems.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2014.08.096