Re-evaluating the induction of bone formation in primates

Abstract The molecular cloning of the osteogenic proteins of the transforming growth factor-β (TGF-β) supergene family and the results of numerous pre-clinical studies in several mammalian species including non-human primates, have prematurely convinced molecular biologists, tissue engineers and ske...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2014-11, Vol.35 (35), p.9407-9422
Hauptverfasser: Ripamonti, Ugo, Duarte, Raquel, Ferretti, Carlo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract The molecular cloning of the osteogenic proteins of the transforming growth factor-β (TGF-β) supergene family and the results of numerous pre-clinical studies in several mammalian species including non-human primates, have prematurely convinced molecular biologists, tissue engineers and skeletal reconstructionists alike to believe that single recombinant human bone morphogenetic/osteogenic proteins (hBMPs/OPs) would result in tissue induction when translated in clinical contexts. This theoretical potential has not been translated to acceptable clinical results. Clinical trials in craniofacial and orthopedic applications such as mandibular reconstruction and sinus-lift operations have indicated that supra physiological doses of a single recombinant human protein are needed to induce unacceptable tissue regeneration whilst incurring significant costs without achieving equivalence to autogenous bone grafts. The acid test for clinically relevant bone tissue engineering should now become the concept of clinically significant osteoinduction , whereby the regenerated bone is readily identifiable on radiographic examination by virtue of its opacity and trabecular architecture. The need for alternatives to the hBMPs/OPs is now felt more acutely following reported complications and performance failure associated with the clinical use of hBMP-2 and hOP-1 (BMP-7). Because of the often substandard regeneration of clinical defects implanted with hBMPs/OPs, we now need to finally deal with the provocative question: are the hBMPs/OPs the only initiators of the induction of bone formation in pre-clinical and clinical contexts? The rapid induction of bone formation by the hTGF-β3 isoform in heteropic intramuscular sites of the Chacma baboon Papio ursinus together with TGF-β 1 , TGF-β 3 , BMP-2 , BMP-3 , OP-1 , RUNX-2 and Osteocalcin up-regulation and expression, hyper cellular osteoblastic activity, osteoid synthesis, angiogenesis and capillary sprouting are the molecular and morphological foundation for the induction of bone formation in clinical contexts. The induction of bone as initiated by hTGF-β3 when implanted in the rectus abdominis muscle of P. ursinus is via the BMPs/OPs pathway with hTGF-β3 controlling the induction of bone formation by regulating the expression of BMPs/OPs via Noggin expression, eliciting the induction of bone formation by up-regulating endogenous BMPs/OPs and it is blocked by hNoggin, providing insights into performance failure of hBMP
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2014.07.053