On the Z-eigenvalues of the signless Laplacian tensor for an even uniform hypergraph

SUMMARYWe generalize the signless Laplacian matrices for graphs to the signless Laplacian tensors for even uniform hypergraphs and set some fundamental properties for the spectral hypergraph theory based upon the signless Laplacian tensors. In particular, the smallest and the largest Z‐eigenvalues o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical linear algebra with applications 2013-12, Vol.20 (6), p.1030-1045
Hauptverfasser: Xie, Jinshan, Chang, An
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:SUMMARYWe generalize the signless Laplacian matrices for graphs to the signless Laplacian tensors for even uniform hypergraphs and set some fundamental properties for the spectral hypergraph theory based upon the signless Laplacian tensors. In particular, the smallest and the largest Z‐eigenvalues of the signless Laplacian tensor for an even uniform hypergraph are studied, and as an application, the bounds of the edge cut and the edge connectivity of the hypergraph involving these two Z‐eigenvalues are presented. Copyright © 2013 John Wiley & Sons, Ltd.
ISSN:1070-5325
1099-1506
DOI:10.1002/nla.1910