Structural and temporal evolution of a reactivated brittle–ductile fault – Part II: Timing of fault initiation and reactivation by K–Ar dating of synkinematic illite/muscovite

Present-day exposures of ancient faults represent only the end result of the faults' often protracted and heterogeneous histories. Here we apply K–Ar dating of synkinematic illite/muscovite to constrain the timing of the complete temporal evolution of a complex, multiply-reactivated brittle–duc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth and planetary science letters 2014-12, Vol.407, p.221-233
Hauptverfasser: Torgersen, E., Viola, G., Zwingmann, H., Harris, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Present-day exposures of ancient faults represent only the end result of the faults' often protracted and heterogeneous histories. Here we apply K–Ar dating of synkinematic illite/muscovite to constrain the timing of the complete temporal evolution of a complex, multiply-reactivated brittle–ductile fault, the Kvenklubben Fault in northern Norway. All obtained ages vary as a function of grain size. Geologically significant events are identified principally on the basis of detailed structural analysis presented in a companion paper (Torgersen and Viola, 2014). Faulting initiated at 531±11Ma, but most strain was accommodated during Caledonian compression at 445±9Ma. The fault was reactivated extensionally at 121±5Ma. C and O isotopic composition of carbonates and silicates in the fault rocks demonstrates that mineral authigenesis was linked to wall–rock disintegration through dolomite decarbonation and metabasalt carbonation. We suggest that the commonly observed case of age decreasing with grain size in K–Ar and 40Ar/39Ar dating of brittle fault rocks can be interpreted as a consequence of mixing between two end-member illite/muscovite generations: an authigenic and a protolithic, in which the finest authigenic grains constrain the timing of the last faulting increment. Integrating detailed structural analysis with age dating is the key towards a better understanding of fault architecture development and the temporal evolution of strain localization and deformation mechanisms. •K–Ar analysis of clay-size illite/muscovite dates brittle–ductile faulting.•The ages of fault initiation and two phases of reactivation are constrained.•Stable isotope data links mineral authigenesis to wall–rock disintegration.•The finest authigenic grains constrain the timing of the last faulting increment.•Age-grain size curves of fault rocks are interpreted as mixing curves.
ISSN:0012-821X
1385-013X
DOI:10.1016/j.epsl.2014.09.031