A dynamic bivariate Poisson model for analysing and forecasting match results in the English Premier League
We develop a statistical model for the analysis and forecasting of football match results which assumes a bivariate Poisson distribution with intensity coefficients that change stochastically over time. The dynamic model is a novelty in the statistical time series analysis of match results in team s...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Statistical Society. Series A, Statistics in society Statistics in society, 2015-01, Vol.178 (1), p.167-186 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 186 |
---|---|
container_issue | 1 |
container_start_page | 167 |
container_title | Journal of the Royal Statistical Society. Series A, Statistics in society |
container_volume | 178 |
creator | Koopman, Siem Jan Lit, Rutger |
description | We develop a statistical model for the analysis and forecasting of football match results which assumes a bivariate Poisson distribution with intensity coefficients that change stochastically over time. The dynamic model is a novelty in the statistical time series analysis of match results in team sports. Our treatment is based on state space and importance sampling methods which are computationally efficient. The out-of-sample performance of our methodology is verified in a betting strategy that is applied to the match outcomes from the 2010–2011 and 2011–2012 seasons of the English football Premier League. We show that our statistical modelling framework can produce a significant positive return over the bookmaker's odds. |
doi_str_mv | 10.1111/rssa.12042 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651411754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43965722</jstor_id><sourcerecordid>43965722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5292-2b3dbefc600a1bf139cdbc7353948ddefe85933679858ddbc84b3a376925f1663</originalsourceid><addsrcrecordid>eNqNkc1v1DAQxSMEEkvLhTuSJS4IKW38HR9Xq7YgrdoVC5Sb5TiTXW_zUTwJsP89SQM9cEDMxR6_33vSeJLkFc3O6FjnEdGdUZYJ9iRZUKF0anL59WmyyIwSKTUmf568QDxkU2m9SO6WpDy2rgmeFOG7i8H1QDZdQOxa0nQl1KTqInGtq48Y2t14K6cX8A77qW9c7_ckAg51jyS0pN8DuWh3dcA92URoAkSyBrcb4DR5Vrka4eXv8yT5fHnxafU-Xd9cfVgt16mXzLCUFbwsoPIqyxwtKsqNLwuvueRG5GUJFeTScK70ONrYFz4XBXdcK8NkRZXiJ8nbOfc-dt8GwN42AT3UtWuhG9BSJamgVEvxH6iQLDO5nlLf_IUeuiGO__IQKDRXOaMj9W6mfOwQI1T2PobGxaOlmZ1WZKcV2YcVjTCd4R-hhuM_SPtxu13-8byePQfsu_joEdwoqdmkp7MesIefj7qLd1ZprqW9vb6yl_LL6na72VrNfwGscayL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1654736821</pqid></control><display><type>article</type><title>A dynamic bivariate Poisson model for analysing and forecasting match results in the English Premier League</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EBSCOhost Business Source Complete</source><creator>Koopman, Siem Jan ; Lit, Rutger</creator><creatorcontrib>Koopman, Siem Jan ; Lit, Rutger</creatorcontrib><description>We develop a statistical model for the analysis and forecasting of football match results which assumes a bivariate Poisson distribution with intensity coefficients that change stochastically over time. The dynamic model is a novelty in the statistical time series analysis of match results in team sports. Our treatment is based on state space and importance sampling methods which are computationally efficient. The out-of-sample performance of our methodology is verified in a betting strategy that is applied to the match outcomes from the 2010–2011 and 2011–2012 seasons of the English football Premier League. We show that our statistical modelling framework can produce a significant positive return over the bookmaker's odds.</description><identifier>ISSN: 0964-1998</identifier><identifier>EISSN: 1467-985X</identifier><identifier>DOI: 10.1111/rssa.12042</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Betting ; Computational efficiency ; Datasets ; Distribution ; Dynamic models ; Football ; Forecasting ; Forecasting models ; Forecasting techniques ; Importance sampling ; Kalman filter smoother ; Mathematical models ; Maximum likelihood estimation ; Non-Gaussian multivariate time series models ; Poisson distribution ; Poisson distributions ; Professional soccer ; Sampling ; Sampling techniques ; Soccer ; Sport statistics ; State vectors ; Statistical analysis ; Statistical discrepancies ; Statistical forecasts ; Statistical models ; Statistics ; Stochastic models ; Time series ; Time series analysis ; Time series forecasting ; Time series models</subject><ispartof>Journal of the Royal Statistical Society. Series A, Statistics in society, 2015-01, Vol.178 (1), p.167-186</ispartof><rights>Copyright © 2015 The Royal Statistical Society and John Wiley & Sons Ltd.</rights><rights>2013 Royal Statistical Society</rights><rights>Copyright Blackwell Publishing Ltd. Jan 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5292-2b3dbefc600a1bf139cdbc7353948ddefe85933679858ddbc84b3a376925f1663</citedby><cites>FETCH-LOGICAL-c5292-2b3dbefc600a1bf139cdbc7353948ddefe85933679858ddbc84b3a376925f1663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43965722$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43965722$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids></links><search><creatorcontrib>Koopman, Siem Jan</creatorcontrib><creatorcontrib>Lit, Rutger</creatorcontrib><title>A dynamic bivariate Poisson model for analysing and forecasting match results in the English Premier League</title><title>Journal of the Royal Statistical Society. Series A, Statistics in society</title><addtitle>J. R. Stat. Soc. A</addtitle><description>We develop a statistical model for the analysis and forecasting of football match results which assumes a bivariate Poisson distribution with intensity coefficients that change stochastically over time. The dynamic model is a novelty in the statistical time series analysis of match results in team sports. Our treatment is based on state space and importance sampling methods which are computationally efficient. The out-of-sample performance of our methodology is verified in a betting strategy that is applied to the match outcomes from the 2010–2011 and 2011–2012 seasons of the English football Premier League. We show that our statistical modelling framework can produce a significant positive return over the bookmaker's odds.</description><subject>Betting</subject><subject>Computational efficiency</subject><subject>Datasets</subject><subject>Distribution</subject><subject>Dynamic models</subject><subject>Football</subject><subject>Forecasting</subject><subject>Forecasting models</subject><subject>Forecasting techniques</subject><subject>Importance sampling</subject><subject>Kalman filter smoother</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimation</subject><subject>Non-Gaussian multivariate time series models</subject><subject>Poisson distribution</subject><subject>Poisson distributions</subject><subject>Professional soccer</subject><subject>Sampling</subject><subject>Sampling techniques</subject><subject>Soccer</subject><subject>Sport statistics</subject><subject>State vectors</subject><subject>Statistical analysis</subject><subject>Statistical discrepancies</subject><subject>Statistical forecasts</subject><subject>Statistical models</subject><subject>Statistics</subject><subject>Stochastic models</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>Time series forecasting</subject><subject>Time series models</subject><issn>0964-1998</issn><issn>1467-985X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkc1v1DAQxSMEEkvLhTuSJS4IKW38HR9Xq7YgrdoVC5Sb5TiTXW_zUTwJsP89SQM9cEDMxR6_33vSeJLkFc3O6FjnEdGdUZYJ9iRZUKF0anL59WmyyIwSKTUmf568QDxkU2m9SO6WpDy2rgmeFOG7i8H1QDZdQOxa0nQl1KTqInGtq48Y2t14K6cX8A77qW9c7_ckAg51jyS0pN8DuWh3dcA92URoAkSyBrcb4DR5Vrka4eXv8yT5fHnxafU-Xd9cfVgt16mXzLCUFbwsoPIqyxwtKsqNLwuvueRG5GUJFeTScK70ONrYFz4XBXdcK8NkRZXiJ8nbOfc-dt8GwN42AT3UtWuhG9BSJamgVEvxH6iQLDO5nlLf_IUeuiGO__IQKDRXOaMj9W6mfOwQI1T2PobGxaOlmZ1WZKcV2YcVjTCd4R-hhuM_SPtxu13-8byePQfsu_joEdwoqdmkp7MesIefj7qLd1ZprqW9vb6yl_LL6na72VrNfwGscayL</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Koopman, Siem Jan</creator><creator>Lit, Rutger</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons Ltd</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201501</creationdate><title>A dynamic bivariate Poisson model for analysing and forecasting match results in the English Premier League</title><author>Koopman, Siem Jan ; Lit, Rutger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5292-2b3dbefc600a1bf139cdbc7353948ddefe85933679858ddbc84b3a376925f1663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Betting</topic><topic>Computational efficiency</topic><topic>Datasets</topic><topic>Distribution</topic><topic>Dynamic models</topic><topic>Football</topic><topic>Forecasting</topic><topic>Forecasting models</topic><topic>Forecasting techniques</topic><topic>Importance sampling</topic><topic>Kalman filter smoother</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimation</topic><topic>Non-Gaussian multivariate time series models</topic><topic>Poisson distribution</topic><topic>Poisson distributions</topic><topic>Professional soccer</topic><topic>Sampling</topic><topic>Sampling techniques</topic><topic>Soccer</topic><topic>Sport statistics</topic><topic>State vectors</topic><topic>Statistical analysis</topic><topic>Statistical discrepancies</topic><topic>Statistical forecasts</topic><topic>Statistical models</topic><topic>Statistics</topic><topic>Stochastic models</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>Time series forecasting</topic><topic>Time series models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koopman, Siem Jan</creatorcontrib><creatorcontrib>Lit, Rutger</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society. Series A, Statistics in society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koopman, Siem Jan</au><au>Lit, Rutger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dynamic bivariate Poisson model for analysing and forecasting match results in the English Premier League</atitle><jtitle>Journal of the Royal Statistical Society. Series A, Statistics in society</jtitle><addtitle>J. R. Stat. Soc. A</addtitle><date>2015-01</date><risdate>2015</risdate><volume>178</volume><issue>1</issue><spage>167</spage><epage>186</epage><pages>167-186</pages><issn>0964-1998</issn><eissn>1467-985X</eissn><abstract>We develop a statistical model for the analysis and forecasting of football match results which assumes a bivariate Poisson distribution with intensity coefficients that change stochastically over time. The dynamic model is a novelty in the statistical time series analysis of match results in team sports. Our treatment is based on state space and importance sampling methods which are computationally efficient. The out-of-sample performance of our methodology is verified in a betting strategy that is applied to the match outcomes from the 2010–2011 and 2011–2012 seasons of the English football Premier League. We show that our statistical modelling framework can produce a significant positive return over the bookmaker's odds.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/rssa.12042</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-1998 |
ispartof | Journal of the Royal Statistical Society. Series A, Statistics in society, 2015-01, Vol.178 (1), p.167-186 |
issn | 0964-1998 1467-985X |
language | eng |
recordid | cdi_proquest_miscellaneous_1651411754 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); Wiley Online Library Journals Frontfile Complete; EBSCOhost Business Source Complete |
subjects | Betting Computational efficiency Datasets Distribution Dynamic models Football Forecasting Forecasting models Forecasting techniques Importance sampling Kalman filter smoother Mathematical models Maximum likelihood estimation Non-Gaussian multivariate time series models Poisson distribution Poisson distributions Professional soccer Sampling Sampling techniques Soccer Sport statistics State vectors Statistical analysis Statistical discrepancies Statistical forecasts Statistical models Statistics Stochastic models Time series Time series analysis Time series forecasting Time series models |
title | A dynamic bivariate Poisson model for analysing and forecasting match results in the English Premier League |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A56%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dynamic%20bivariate%20Poisson%20model%20for%20analysing%20and%20forecasting%20match%20results%20in%20the%20English%20Premier%20League&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20A,%20Statistics%20in%20society&rft.au=Koopman,%20Siem%20Jan&rft.date=2015-01&rft.volume=178&rft.issue=1&rft.spage=167&rft.epage=186&rft.pages=167-186&rft.issn=0964-1998&rft.eissn=1467-985X&rft_id=info:doi/10.1111/rssa.12042&rft_dat=%3Cjstor_proqu%3E43965722%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1654736821&rft_id=info:pmid/&rft_jstor_id=43965722&rfr_iscdi=true |