A dynamic bivariate Poisson model for analysing and forecasting match results in the English Premier League
We develop a statistical model for the analysis and forecasting of football match results which assumes a bivariate Poisson distribution with intensity coefficients that change stochastically over time. The dynamic model is a novelty in the statistical time series analysis of match results in team s...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Statistical Society. Series A, Statistics in society Statistics in society, 2015-01, Vol.178 (1), p.167-186 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop a statistical model for the analysis and forecasting of football match results which assumes a bivariate Poisson distribution with intensity coefficients that change stochastically over time. The dynamic model is a novelty in the statistical time series analysis of match results in team sports. Our treatment is based on state space and importance sampling methods which are computationally efficient. The out-of-sample performance of our methodology is verified in a betting strategy that is applied to the match outcomes from the 2010–2011 and 2011–2012 seasons of the English football Premier League. We show that our statistical modelling framework can produce a significant positive return over the bookmaker's odds. |
---|---|
ISSN: | 0964-1998 1467-985X |
DOI: | 10.1111/rssa.12042 |