Representing Forecast Error in a Convection-Permitting Ensemble System

Ensembles provide an opportunity to greatly improve short-term prediction of local weather hazards, yet generating reliable predictions remain a significant challenge. In particular, convection-permitting ensemble forecast systems (CPEFSs) have persistent problems with underdispersion. Representing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly weather review 2014-12, Vol.142 (12), p.4519-4541
Hauptverfasser: Romine, Glen S, Schwartz, Craig S, Berner, Judith, Fossell, Kathryn R, Snyder, Chris, Anderson, Jeff L, Weisman, Morris L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ensembles provide an opportunity to greatly improve short-term prediction of local weather hazards, yet generating reliable predictions remain a significant challenge. In particular, convection-permitting ensemble forecast systems (CPEFSs) have persistent problems with underdispersion. Representing initial and or lateral boundary condition uncertainty along with forecast model error provides a foundation for building a more dependable CPEFS, but the best practice for ensemble system design is not well established. Several configurations of CPEFSs are examined where ensemble forecasts are nested within a larger domain, drawing initial conditions from a downscaled, continuously cycled, ensemble data assimilation system that provides state-dependent initial condition uncertainty. The control ensemble forecast, with initial condition uncertainty only, is skillful but underdispersive. To improve the reliability of the ensemble forecasts, the control ensemble is supplemented with 1) perturbed lateral boundary conditions; or, model error representation using either 2) stochastic kinetic energy backscatter or 3) stochastically perturbed parameterization tendencies. Forecasts are evaluated against stage IV accumulated precipitation analyses and radiosonde observations. Perturbed ensemble forecasts are also compared to the control forecast to assess the relative impact from adding forecast perturbations. For precipitation forecasts, all perturbation approaches improve ensemble reliability relative to the control CPEFS. Deterministic ensemble member forecast skill, verified against radiosonde observations, decreases when forecast perturbations are added, while ensemble mean forecasts remain similarly skillful to the control.
ISSN:0027-0644
1520-0493
DOI:10.1175/MWR-D-14-00100.1