Microstructure and Mechanical Properties of Copper Processed by Twist Extrusion with a Reduced Twist-Line Slope

Pure copper processed by a twist extrusion process with a reduced twist-line slope is investigated. Twist extrusion is a severe plastic deformation technique which is promising for scale-up because it allows for processing of relatively large metallic bars. On the way to commercialization, decreasin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2014-04, Vol.45 (4), p.2232-2241
Hauptverfasser: Latypov, Marat I., Yoon, Eun Yoo, Lee, Dong Jun, Kulagin, Roman, Beygelzimer, Yan, Seyed Salehi, Majid, Kim, Hyoung Seop
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pure copper processed by a twist extrusion process with a reduced twist-line slope is investigated. Twist extrusion is a severe plastic deformation technique which is promising for scale-up because it allows for processing of relatively large metallic bars. On the way to commercialization, decreasing costs associated with processing is critical for twist extrusion. As one of the measures, reducing the twist-line slope—an important geometrical feature of twist extrusion—can be advantageous in terms of processing costs. The current study seeks to elucidate effects of reducing the twist-line slope on the microstructure, mechanical properties, and their heterogeneity in the processed metal, which were unclear because most of the previous research has focused on twist extrusion with high twist-line slopes ( e.g. , 60 deg). Results of the present study suggest that reducing the twist-line slope moderates grain refinement and limits improvement of mechanical properties of the twist-extruded metal. These findings are discussed in terms of the shear strain reversal which is inherent in the process.
ISSN:1073-5623
1543-1940
DOI:10.1007/s11661-013-2165-1