Synthesis and characterization of high nitrile content polyimides as dielectric films for electrical energy storage

ABSTRACT Three new isomeric diamines containing three, oxy‐linked benzonitriles (3BCN), one of which is asymmetric (meta, para, or m, p), are synthesized in a 3‐step sequence. Polycondensation of these diamines and four common dianhydrides (6FDA, OPDA, BTDA, and PMDA) in N,N‐dimethylacetamide via po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer science. Part A, Polymer chemistry Polymer chemistry, 2015-02, Vol.53 (3), p.422-436
Hauptverfasser: Wang, David H., Kurish, Brian A., Treufeld, Imre, Zhu, Lei, Tan, Loon-Seng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Three new isomeric diamines containing three, oxy‐linked benzonitriles (3BCN), one of which is asymmetric (meta, para, or m, p), are synthesized in a 3‐step sequence. Polycondensation of these diamines and four common dianhydrides (6FDA, OPDA, BTDA, and PMDA) in N,N‐dimethylacetamide via poly(amic acid) precursors and thermal curing at temperatures up to 300 °C lead to three series of tough, creasable polyimide (PI) films (tensile moduli = 1.63 − 2.86 GPa). Among these PIs, two PMDA‐based PIs possess relatively high crystallinity and two OPDA‐based PIs, low crystallinity, whereas all 6FDA‐ and BTDA‐based PIs, and m,m‐3BCN‐OPDA‐PI are amorphous, readily soluble in common polar aprotic solvents. Thermally stable and having high Tg (216 − 341 °C), these PIs lose 5% weight around 493–503 °C in air and 463–492 °C in nitrogen. Dielectric properties have been evaluated by broadband dielectric spectroscopy (BDS) and electric displacement‐electric‐field (D‐E) loop measurements. D‐E loop results show an increase in high temperature permittivity (at 190 °C/1 kHz) from 2.9 (for parent PI CP2 with no nitrile group) to as high as 4.9 for these PIs, while keeping their dielectric loss relatively low. Thus, an increase in dipole moment density by the presence of three neighboring CN per repeat unit can increase the overall permittivity, which could be further enhanced by sub‐Tg mobility of para‐phenylene linkages (BDS results). Published 2014. J. Polym. Sci., Part A: Polym. Chem. 2014 J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 422–436 In the polyimide films, an increase in dipole moment density by the presence of three neighboring CN per repeat unit can increase relative permittivity. Polarization response results implicate that (i) an increase in the number of CN dipoles is insufficient in elevating permittivity proportionally without cooperative alignment of the multiple dipoles; (ii) paraphenylene is more effective than meta‐phenylene in enhancing relative permittivity probably because of its greater facility in sub‐Tg mobility (“ring flipping”) that aids such cooperative dipole alignment with applied electric field.
ISSN:0887-624X
1099-0518
DOI:10.1002/pola.27445