Degradation of simazine from aqueous solutions by diatomite-supported nanosized zero-valent iron composite materials

Nanosized zero-valent iron (nZVI) particles were deposited onto acid-leached diatomite through centrifugation or rotary evaporation. The synthesis schematic diagram and morphology of the prepared nZVI/diatomite composites are shown in the illustration. The removal efficiency for herbicide simazine b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2013-12, Vol.263, p.768-777
Hauptverfasser: Sun, Zhiming, Zheng, Shuilin, Ayoko, Godwin A., Frost, Ray L., Xi, Yunfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanosized zero-valent iron (nZVI) particles were deposited onto acid-leached diatomite through centrifugation or rotary evaporation. The synthesis schematic diagram and morphology of the prepared nZVI/diatomite composites are shown in the illustration. The removal efficiency for herbicide simazine by nZVI/diatomite composites was compared with that of the pristine nZVI and the commercial iron powder. •Diatomite-supported nanosized zero-valent iron composite was synthesised.•The obtained composites were characterised by XRD, SEM–EDS, TEM and XPS.•The removal efficiency for simazine in water were studied.•The prepared composite showed potential prospects in environmental remediation. A novel composite material based on deposition of nanosized zero-valent iron (nZVI) particles on acid-leached diatomite was synthesised for the removal of a chlorinated contaminant in water. The nZVI/diatomite composites were characterised by X-ray diffraction, scanning electron microscopy, elemental analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. Compared with the pure nZVI particles, better dispersion of nZVI particles on the surface or inside the pores of diatom shells was observed. The herbicide simazine was selected as the model chlorinated contaminant and the removal efficiency by nZVI/diatomite composite was compared with that of the pristine nZVI and commercial iron powder. It was found that the diatomite supported nZVI composite material prepared by centrifugation exhibits relatively better efficient activity in decomposition of simazine than commercial Fe, lab synthesised nZVI and composite material prepared via rotary evaporation, and the optimum experimental conditions were obtained based on a series of batch experiments. This study on immobilising nZVI particles onto diatomite opens a new avenue for the practical application of nZVI and the diatomite-supported nanosized zero-valent iron composite materials have potential applications in environmental remediation.
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2013.10.045