Conjugate Gradient Iterative Hard Thresholding: Observed Noise Stability for Compressed Sensing

Conjugate gradient iterative hard thresholding (CGIHT) for compressed sensing combines the low per iteration computational cost of simple line search iterative hard thresholding algorithms with the improved convergence rates of more sophisticated sparse approximation algorithms. This paper shows tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2015-01, Vol.63 (2), p.528-537
Hauptverfasser: Blanchard, Jeffrey D., Tanner, Jared, Ke Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conjugate gradient iterative hard thresholding (CGIHT) for compressed sensing combines the low per iteration computational cost of simple line search iterative hard thresholding algorithms with the improved convergence rates of more sophisticated sparse approximation algorithms. This paper shows that the average case performance of CGIHT is robust to additive noise well beyond its theoretical worst case guarantees and, in this setting, is typically the fastest iterative hard thresholding algorithm for sparse approximation. Moreover, CGIHT is observed to benefit more than other iterative hard thresholding algorithms when jointly considering multiple sparse vectors whose sparsity patterns coincide.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2014.2379665