Home Appliance Load Modeling From Aggregated Smart Meter Data
With recent developments in the infrastructure of smart meters and smart grid, more electric power data is available and allows real-time easy data access. Modeling individual home appliance loads is important for tasks such as non-intrusive load disaggregation, load forecasting, and demand response...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2015-01, Vol.30 (1), p.254-262 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With recent developments in the infrastructure of smart meters and smart grid, more electric power data is available and allows real-time easy data access. Modeling individual home appliance loads is important for tasks such as non-intrusive load disaggregation, load forecasting, and demand response support. Previous methods usually require sub-metering individual appliances in a home separately to determine the appliance models, which may not be practical, since we may only be able to observe aggregated real power signals for the entire-home through smart meters deployed in the field. In this paper, we propose a model, named Explicit-Duration Hidden Markov Model with differential observations (EDHMM-diff), for detecting and estimating individual home appliance loads from aggregated power signals collected by ordinary smart meters. Experiments on synthetic data and real data demonstrate that the EDHMM-diff model and the specialized forward-backward algorithm can effectively model major home appliance loads. |
---|---|
ISSN: | 0885-8950 1558-0679 |
DOI: | 10.1109/TPWRS.2014.2327041 |