Home Appliance Load Modeling From Aggregated Smart Meter Data

With recent developments in the infrastructure of smart meters and smart grid, more electric power data is available and allows real-time easy data access. Modeling individual home appliance loads is important for tasks such as non-intrusive load disaggregation, load forecasting, and demand response...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2015-01, Vol.30 (1), p.254-262
Hauptverfasser: Zhenyu Guo, Wang, Z. Jane, Kashani, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With recent developments in the infrastructure of smart meters and smart grid, more electric power data is available and allows real-time easy data access. Modeling individual home appliance loads is important for tasks such as non-intrusive load disaggregation, load forecasting, and demand response support. Previous methods usually require sub-metering individual appliances in a home separately to determine the appliance models, which may not be practical, since we may only be able to observe aggregated real power signals for the entire-home through smart meters deployed in the field. In this paper, we propose a model, named Explicit-Duration Hidden Markov Model with differential observations (EDHMM-diff), for detecting and estimating individual home appliance loads from aggregated power signals collected by ordinary smart meters. Experiments on synthetic data and real data demonstrate that the EDHMM-diff model and the specialized forward-backward algorithm can effectively model major home appliance loads.
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2014.2327041