Three-dimensional photograph of electron tracks through a plastic scintillator

The reconstruction of particle trajectories makes it possible to distinguish between different types of charged particles. In high-energy physics, where trajectories are rather long (several meters), large size trackers must be used to achieve sufficient position resolution. However, in low-backgrou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. C, Particles and fields Particles and fields, 2014-11, Vol.74 (11), p.1-10, Article 3131
Hauptverfasser: Filipenko, Mykhaylo, Iskhakov, Timur, Hufschmidt, Patrick, Anton, Gisela, Campbell, Michael, Gleixner, Thomas, Leuchs, Gerd, Tick, Timo, Vallerga, John, Wagenpfeil, Michael, Michel, Thilo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The reconstruction of particle trajectories makes it possible to distinguish between different types of charged particles. In high-energy physics, where trajectories are rather long (several meters), large size trackers must be used to achieve sufficient position resolution. However, in low-background experiments like the search for neutrinoless double beta decay, tracks are rather short (some mm to several cm, depending on the detector in use) and three-dimensional trajectories could only be resolved in gaseous time-projection chambers so far. For detectors of a large volume of around one cubic meter (large in the scope of neutrinoless double beta search) and therefore large drift distances (several decimeters to 1 m), this technique is limited by diffusion and repulsion of charge carriers. In this work we present a “proof-of-principle” experiment for a new method of the three-dimensional tracking of charged particles by scintillation light: we used a setup consisting of a scintillator, mirrors, lenses, and a novel imaging device (the hybrid photon detector) in order to image two projections of electron tracks through the scintillator. We took data at the T-22 beamline at DESY with relativistic electrons with a kinetic energy of 5 GeV and from this data successfully reconstructed their three-dimensional propagation path in the scintillator. With our setup we achieved a position resolution in the range of 170–248 µm.
ISSN:1434-6044
1434-6052
DOI:10.1140/epjc/s10052-014-3131-9