Organic Nanowire Fabrication and Device Applications

Organic nanowires (ONWs) are flexible, stretchable, and have good electrical properties, and therefore have great potential for use in next‐generation textile and wearable electronics. Analysis of trends in ONWs supports their great potential for various stretchable and flexible electronic applicati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2015-01, Vol.11 (1), p.45-62
Hauptverfasser: Min, Sung-Yong, Kim, Tae-Sik, Lee, Yeongjun, Cho, Himchan, Xu, Wentao, Lee, Tae-Woo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 62
container_issue 1
container_start_page 45
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 11
creator Min, Sung-Yong
Kim, Tae-Sik
Lee, Yeongjun
Cho, Himchan
Xu, Wentao
Lee, Tae-Woo
description Organic nanowires (ONWs) are flexible, stretchable, and have good electrical properties, and therefore have great potential for use in next‐generation textile and wearable electronics. Analysis of trends in ONWs supports their great potential for various stretchable and flexible electronic applications such as flexible displays and flexible photovoltaics. Numerous methods can be used to prepare ONWs, but the practical industrial application of ONWs has not been achieved because of the lack of reliable techniques for controlling and patterning of individual nanowires. Therefore, an “individually controllable” technique to fabricate ONWs is essential for practical device applications. In this paper, three types of fabrication methods of ONWs are reviewed: non‐alignment methods, massive‐alignment methods, and individual‐alignment methods. Recent research on electronic and photonic device applications of ONWs is then reviewed. Finally, suggestions for future research are put forward. Organic nanowires (ONWs) have great advantages for application in flexible and stretchable nano‐electronics, including field‐effect transistors and circuits, light‐emitting diodes, and photovoltaics. Here, various kinds of ONW fabrication methods are classified according to their possible alignments: non‐alignment methods, massive‐alignment method, and individual‐alignment methods. Then recent research for electronic and photonic device applications of ONWs is introduced.
doi_str_mv 10.1002/smll.201401487
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1651390252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642610995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5107-cb68a5673232e691b8aa995e332592892e50a2886065a86d7c0c480b11c22a913</originalsourceid><addsrcrecordid>eNqNkEtLAzEURoMovrcuZcCNm6n3JpNMshS1Phh1oaK7kEmjRKczNWl9_HtTWou4UQgkhPN9l3sI2UHoIQA9iMOm6VHAIh1ZLpF1FMhyIalaXrwR1shGjM8ADGlRrpI1yqnkAnCdFNfhybTeZlem7d59cFnf1MFbM_Zdm5l2kB27N29ddjgaNfPvuEVWHk0T3fb83iR3_ZPbo7O8uj49PzqscssRytzWQhouSkYZdUJhLY1RijvGKFdUKuo4GCqlAMGNFIPSgi0k1IiWUqOQbZL9We8odK8TF8d66KN1TWNa102iRsGRKUjb_AMtqEBI4xO69wt97iahTYtMKRQJUZCo3oyyoYsxuEc9Cn5owqdG0FP1eqpeL9SnwO68dlIP3WCBf7tOgJoB775xn3_U6ZvLqvpZns-yPo7dxyJrwotOfkuu769O9a2SN9VFv9IP7AthbZt1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1641695390</pqid></control><display><type>article</type><title>Organic Nanowire Fabrication and Device Applications</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Min, Sung-Yong ; Kim, Tae-Sik ; Lee, Yeongjun ; Cho, Himchan ; Xu, Wentao ; Lee, Tae-Woo</creator><creatorcontrib>Min, Sung-Yong ; Kim, Tae-Sik ; Lee, Yeongjun ; Cho, Himchan ; Xu, Wentao ; Lee, Tae-Woo</creatorcontrib><description>Organic nanowires (ONWs) are flexible, stretchable, and have good electrical properties, and therefore have great potential for use in next‐generation textile and wearable electronics. Analysis of trends in ONWs supports their great potential for various stretchable and flexible electronic applications such as flexible displays and flexible photovoltaics. Numerous methods can be used to prepare ONWs, but the practical industrial application of ONWs has not been achieved because of the lack of reliable techniques for controlling and patterning of individual nanowires. Therefore, an “individually controllable” technique to fabricate ONWs is essential for practical device applications. In this paper, three types of fabrication methods of ONWs are reviewed: non‐alignment methods, massive‐alignment methods, and individual‐alignment methods. Recent research on electronic and photonic device applications of ONWs is then reviewed. Finally, suggestions for future research are put forward. Organic nanowires (ONWs) have great advantages for application in flexible and stretchable nano‐electronics, including field‐effect transistors and circuits, light‐emitting diodes, and photovoltaics. Here, various kinds of ONW fabrication methods are classified according to their possible alignments: non‐alignment methods, massive‐alignment method, and individual‐alignment methods. Then recent research for electronic and photonic device applications of ONWs is introduced.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201401487</identifier><identifier>PMID: 25285601</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Animals ; Devices ; Electronic devices ; Electronics ; Humans ; Lasers ; Nanotechnology ; Nanotechnology - instrumentation ; Nanotechnology - methods ; nanowire alignment ; nanowire printing ; Nanowires ; Nanowires - ultrastructure ; Organic Chemicals - chemistry ; organic field-effect transistors ; organic light-emitting devices ; organic nanowires ; organic photovoltaics ; Photonics ; Photovoltaic cells ; polymer nanowires ; R&amp;D ; Research &amp; development ; Solar cells ; Textiles ; Transistors, Electronic</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2015-01, Vol.11 (1), p.45-62</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5107-cb68a5673232e691b8aa995e332592892e50a2886065a86d7c0c480b11c22a913</citedby><cites>FETCH-LOGICAL-c5107-cb68a5673232e691b8aa995e332592892e50a2886065a86d7c0c480b11c22a913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201401487$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201401487$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25285601$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Min, Sung-Yong</creatorcontrib><creatorcontrib>Kim, Tae-Sik</creatorcontrib><creatorcontrib>Lee, Yeongjun</creatorcontrib><creatorcontrib>Cho, Himchan</creatorcontrib><creatorcontrib>Xu, Wentao</creatorcontrib><creatorcontrib>Lee, Tae-Woo</creatorcontrib><title>Organic Nanowire Fabrication and Device Applications</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Organic nanowires (ONWs) are flexible, stretchable, and have good electrical properties, and therefore have great potential for use in next‐generation textile and wearable electronics. Analysis of trends in ONWs supports their great potential for various stretchable and flexible electronic applications such as flexible displays and flexible photovoltaics. Numerous methods can be used to prepare ONWs, but the practical industrial application of ONWs has not been achieved because of the lack of reliable techniques for controlling and patterning of individual nanowires. Therefore, an “individually controllable” technique to fabricate ONWs is essential for practical device applications. In this paper, three types of fabrication methods of ONWs are reviewed: non‐alignment methods, massive‐alignment methods, and individual‐alignment methods. Recent research on electronic and photonic device applications of ONWs is then reviewed. Finally, suggestions for future research are put forward. Organic nanowires (ONWs) have great advantages for application in flexible and stretchable nano‐electronics, including field‐effect transistors and circuits, light‐emitting diodes, and photovoltaics. Here, various kinds of ONW fabrication methods are classified according to their possible alignments: non‐alignment methods, massive‐alignment method, and individual‐alignment methods. Then recent research for electronic and photonic device applications of ONWs is introduced.</description><subject>Animals</subject><subject>Devices</subject><subject>Electronic devices</subject><subject>Electronics</subject><subject>Humans</subject><subject>Lasers</subject><subject>Nanotechnology</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotechnology - methods</subject><subject>nanowire alignment</subject><subject>nanowire printing</subject><subject>Nanowires</subject><subject>Nanowires - ultrastructure</subject><subject>Organic Chemicals - chemistry</subject><subject>organic field-effect transistors</subject><subject>organic light-emitting devices</subject><subject>organic nanowires</subject><subject>organic photovoltaics</subject><subject>Photonics</subject><subject>Photovoltaic cells</subject><subject>polymer nanowires</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Solar cells</subject><subject>Textiles</subject><subject>Transistors, Electronic</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkEtLAzEURoMovrcuZcCNm6n3JpNMshS1Phh1oaK7kEmjRKczNWl9_HtTWou4UQgkhPN9l3sI2UHoIQA9iMOm6VHAIh1ZLpF1FMhyIalaXrwR1shGjM8ADGlRrpI1yqnkAnCdFNfhybTeZlem7d59cFnf1MFbM_Zdm5l2kB27N29ddjgaNfPvuEVWHk0T3fb83iR3_ZPbo7O8uj49PzqscssRytzWQhouSkYZdUJhLY1RijvGKFdUKuo4GCqlAMGNFIPSgi0k1IiWUqOQbZL9We8odK8TF8d66KN1TWNa102iRsGRKUjb_AMtqEBI4xO69wt97iahTYtMKRQJUZCo3oyyoYsxuEc9Cn5owqdG0FP1eqpeL9SnwO68dlIP3WCBf7tOgJoB775xn3_U6ZvLqvpZns-yPo7dxyJrwotOfkuu769O9a2SN9VFv9IP7AthbZt1</recordid><startdate>20150107</startdate><enddate>20150107</enddate><creator>Min, Sung-Yong</creator><creator>Kim, Tae-Sik</creator><creator>Lee, Yeongjun</creator><creator>Cho, Himchan</creator><creator>Xu, Wentao</creator><creator>Lee, Tae-Woo</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7TB</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20150107</creationdate><title>Organic Nanowire Fabrication and Device Applications</title><author>Min, Sung-Yong ; Kim, Tae-Sik ; Lee, Yeongjun ; Cho, Himchan ; Xu, Wentao ; Lee, Tae-Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5107-cb68a5673232e691b8aa995e332592892e50a2886065a86d7c0c480b11c22a913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Devices</topic><topic>Electronic devices</topic><topic>Electronics</topic><topic>Humans</topic><topic>Lasers</topic><topic>Nanotechnology</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotechnology - methods</topic><topic>nanowire alignment</topic><topic>nanowire printing</topic><topic>Nanowires</topic><topic>Nanowires - ultrastructure</topic><topic>Organic Chemicals - chemistry</topic><topic>organic field-effect transistors</topic><topic>organic light-emitting devices</topic><topic>organic nanowires</topic><topic>organic photovoltaics</topic><topic>Photonics</topic><topic>Photovoltaic cells</topic><topic>polymer nanowires</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Solar cells</topic><topic>Textiles</topic><topic>Transistors, Electronic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Min, Sung-Yong</creatorcontrib><creatorcontrib>Kim, Tae-Sik</creatorcontrib><creatorcontrib>Lee, Yeongjun</creatorcontrib><creatorcontrib>Cho, Himchan</creatorcontrib><creatorcontrib>Xu, Wentao</creatorcontrib><creatorcontrib>Lee, Tae-Woo</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Min, Sung-Yong</au><au>Kim, Tae-Sik</au><au>Lee, Yeongjun</au><au>Cho, Himchan</au><au>Xu, Wentao</au><au>Lee, Tae-Woo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic Nanowire Fabrication and Device Applications</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2015-01-07</date><risdate>2015</risdate><volume>11</volume><issue>1</issue><spage>45</spage><epage>62</epage><pages>45-62</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Organic nanowires (ONWs) are flexible, stretchable, and have good electrical properties, and therefore have great potential for use in next‐generation textile and wearable electronics. Analysis of trends in ONWs supports their great potential for various stretchable and flexible electronic applications such as flexible displays and flexible photovoltaics. Numerous methods can be used to prepare ONWs, but the practical industrial application of ONWs has not been achieved because of the lack of reliable techniques for controlling and patterning of individual nanowires. Therefore, an “individually controllable” technique to fabricate ONWs is essential for practical device applications. In this paper, three types of fabrication methods of ONWs are reviewed: non‐alignment methods, massive‐alignment methods, and individual‐alignment methods. Recent research on electronic and photonic device applications of ONWs is then reviewed. Finally, suggestions for future research are put forward. Organic nanowires (ONWs) have great advantages for application in flexible and stretchable nano‐electronics, including field‐effect transistors and circuits, light‐emitting diodes, and photovoltaics. Here, various kinds of ONW fabrication methods are classified according to their possible alignments: non‐alignment methods, massive‐alignment method, and individual‐alignment methods. Then recent research for electronic and photonic device applications of ONWs is introduced.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>25285601</pmid><doi>10.1002/smll.201401487</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2015-01, Vol.11 (1), p.45-62
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_1651390252
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Devices
Electronic devices
Electronics
Humans
Lasers
Nanotechnology
Nanotechnology - instrumentation
Nanotechnology - methods
nanowire alignment
nanowire printing
Nanowires
Nanowires - ultrastructure
Organic Chemicals - chemistry
organic field-effect transistors
organic light-emitting devices
organic nanowires
organic photovoltaics
Photonics
Photovoltaic cells
polymer nanowires
R&D
Research & development
Solar cells
Textiles
Transistors, Electronic
title Organic Nanowire Fabrication and Device Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A25%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%20Nanowire%20Fabrication%20and%20Device%20Applications&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Min,%20Sung-Yong&rft.date=2015-01-07&rft.volume=11&rft.issue=1&rft.spage=45&rft.epage=62&rft.pages=45-62&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201401487&rft_dat=%3Cproquest_cross%3E1642610995%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1641695390&rft_id=info:pmid/25285601&rfr_iscdi=true